CSCI 130 Introduction to Engineering Computing Class Meeting #26

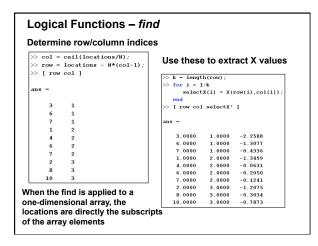
Engineering Computing and Problem Solving with Matlab

> Logical functions – *find, any* and *all* Vector calculations Anonymous functions

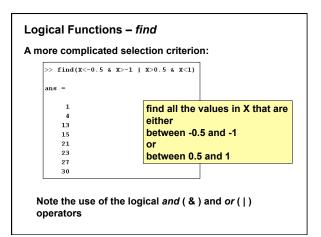
Logical Functions - find

A useful technique to locate and select items from an array according to a given criterion

Example:

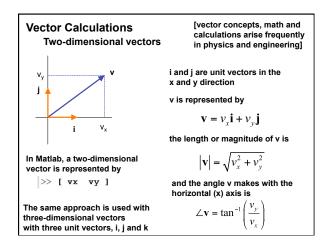

Create an example matrix of random numbers

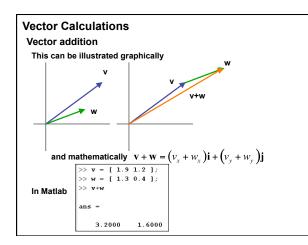
>> X = randu >> X	n(10,3);	
κ =		
0.5377	-1.3499	0.6715
1.8339	3.0349	-1.2075
-2.2588	0.7254	0.7172
0.8622	-0.0631	1.6302
0.3188	0.7147	0.4889
-1.3077	-0.2050	1.0347
-0.4336	-0.1241	0.7269
0.3426	1.4897	-0.3034
3.5784	1.4090	0.2939
2.7694	1.4172	-0.7873


	1		
egative numbers are			
X = randn(10,3);			
×x			

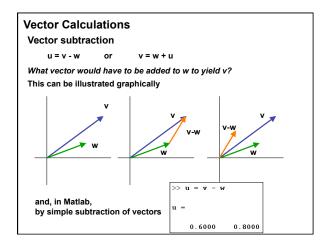
Use <i>find</i> to dete in the X matrix	>> find(X<0)	> x = randrow x		
	ans =	x =		
	3 6 7 11 14 16 17 22 28 30	0.8622 0.3188 -1.3077 -0.4336 0.3426	0.7254 -0.0631 0.7147 -0.2050	0.4889 1.0347 0.7269

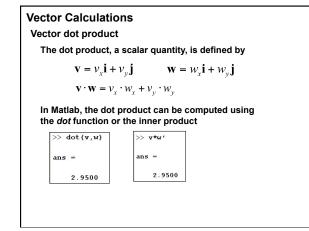


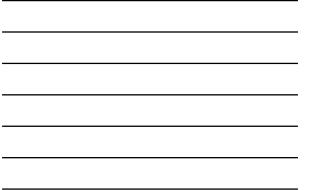


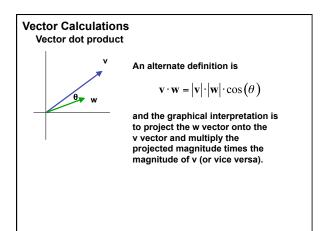


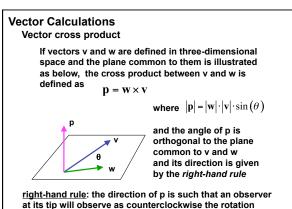
>> X = rand	n(10,3);	
>> x		
x -		
0.5377	-1.3499	0.6715
1.8339	3.0349	-1.2075
-2.2588	0.7254	0.7172
0.8622	-0.0631	1.6302
0.3188	0.7147	0.4889
-1.3077	-0.2050	1.0347
		0.2939
2.7694	1.4172	-0.7873
ny elements	> 3 ?	
	>> X X = 0.5377 1.8339 -2.2588 0.6622 0.3188 -1.3077 -0.430 0.3426 3.5784 2.7694	X = 0.5377 -1.3499 1.8339 3.0349 -2.2588 0.7254 0.8622 -0.0631 0.3188 0.7147 -1.3077 -0.2050

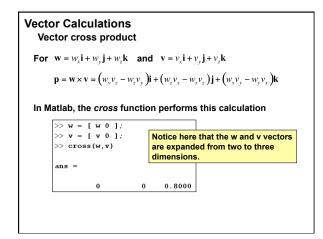


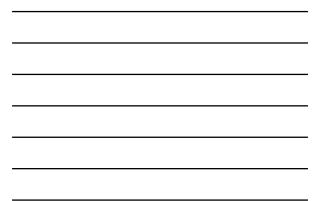




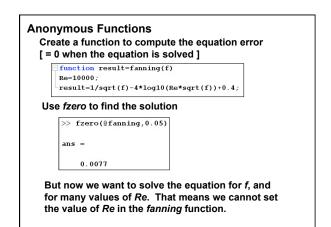


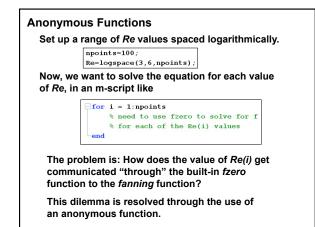


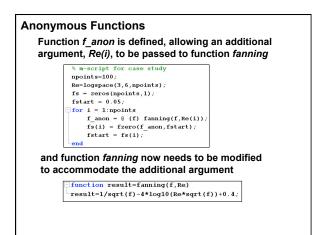


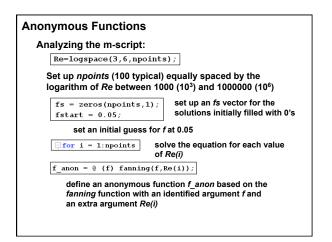


through θ which brings the vector w in line with the vector v


Anonymous Functions


The need for the so-called *anonymous function* occurs in Matlab when it is necessary to pass additional arguments through a function to another function. Here is an example to make this clear.


Given a value of the parameter Re, solve the following equation for f, with an initial estimate for f. Then, carry out a case study of f versus values of Re from 1000 through 1000000, spaced logarithmically.


$$\frac{1}{\sqrt{f}} - 4 \cdot \log_{10} \left(Re \cdot \sqrt{f} \right) + 0.4 = 0$$

We can use *fzero* to solve for *f*, given one value of *Re* as follows.

alyzing the m-script:	
<pre>fs(i) = fzero(f_anon,fstart);</pre>	
call fzero with the anonymous function argument and fstart as the starting gu solution – the solution is stored in fs(in fstart = fs(i);	ess for the
use the <i>fs(i)</i> value as the starting guess solution of the equation	s for the next
Create a semilog plot of the f solution	ns vs <i>R</i> e
>> semilogx(Re,fs,'k');grid	
>> xlabel('Re')	
>> ylabel('f')	
>> title('Case Study of f versus Re')	

