Engineering Computing

and Problem Solving with Matlab
Logical functions - find, any and all
Vector calculations
Anonymous functions

Logical Functions - find

A useful technique to locate and select items from an array according to a given criterion

Example:

Create an example matrix of random numbers
\qquad
\qquad
\qquad

$\begin{array}{ll} \gg & x=\operatorname{randn}(10,3) ; \\ \gg & x \end{array}$		
$\mathrm{x}=$		
0.5377	-1.3499	0.6715
1.8339	3.0349	-1.2075
-2.2588	0.7254	0.7172
0.8622	-0.0631	1.6302
0.3188	0.7147	0.4889
-1.3077	-0.2050	1.0347
-0. 4336	-0.1241	0.7269
0.3426	1.4897	-0.3034
3.5784	1.4090	0.2939
2.7694	1.4172	-0.7873

Logical Functions - find

Use find to determine where the negative numbers are

in the X matrix

$>$ find $(x<0)$
ans $=$
3
6
7
11
14
16
17
22
28
30

\gg		
\gg	$\mathrm{x}-\operatorname{randn}(10,3) ;$	
x		
x		
0.5377	-1.3499	0.6715
1.8339	3.0349	-1.2075
-2.2588	0.7254	0.7172
0.8622	-0.0631	1.6302
0.3188	0.7147	0.4839
-1.3077	-0.2050	1.0347
-0.4336	-0.1241	0.7269
0.3426	1.4897	-0.3034
3.5784	1.4090	0.2939
2.7694	1.4172	-0.7873

ans contains locations counting down first column, \qquad then down second column, etc. How to make these into row-column indices?

Logical Functions - find Determine row/column indices	
```>> col = ceil(locations/H);```   When the find is applied to a one-dimensional array, the locations are directly the subscripts of the array elements	Use these to extract $X$ values

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Logical Functions - find

A more complicated selection criterion:


Note the use of the logical and ( \& ) and or ( | )
operators

## Logical Functions - all and any

Results are true(1)/false(0)

$\begin{aligned} & \gg \text { all }(\mathrm{x}>-3 \& \mathrm{x}<3) \\ & \text { ans }= \end{aligned}$		
0	0	1

Are all the elements between -3 and 3 ?

No, in columns 1 and 2 Yes, in column 3

$\gg \operatorname{any}(x>3)$		
ans $=$		
1	1	0

Are there any elements > 3 ?
Yes, in columns 1 and 2
No, in column 3

Vector Calculations Two-dimensional vectors	[vector concepts, math and calculations arise frequently in physics and engineering]
$\begin{aligned} & \mathrm{v}_{\mathrm{y}} \\ & \mathrm{j} \end{aligned}$	$i$ and j are unit vectors in the $x$ and $y$ direction
	$v$ is represented by
	$\mathbf{v}=v_{x} \mathbf{i}+v_{y} \mathbf{j}$
	the length or magnitude of $v$ is
In Matlab, a two-dimensional vector is represented by	$\|\mathbf{v}\|=\sqrt{v_{x}^{2}+v_{y}^{2}}$
>> [ vx vy ]	and the angle v makes with the horizontal ( $\mathbf{x}$ ) axis is
The same approach is used with three-dimensional vectors with three unit vectors, $i, j$ and $k$	$\angle \mathbf{v}=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$



$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

```
Vector Calculations
Vector dot product
 The dot product, a scalar quantity, is defined by
\[
\begin{aligned}
& \mathbf{v}=v_{x} \mathbf{i}+v_{y} \mathbf{j} \quad \mathbf{w}=w_{x} \mathbf{i}+w_{y} \mathbf{j} \\
& \mathbf{v} \cdot \mathbf{w}=v_{x} \cdot w_{x}+v_{y} \cdot w_{y}
\end{aligned}
\]
```

$\qquad$
$\qquad$
In Matlab, the dot product can be computed using the dot function or the inner product $\qquad$

| $\gg \operatorname{dot}(v, w)$ |
| ---: | ---: |
| ans $=$ |
| 2.9500 |$\quad$| $\gg *^{\prime}$ |
| ---: |
| ans $=$ |
| 2.9500 |

$\qquad$
$\qquad$
$\qquad$


An alternate definition is
$\mathbf{v} \cdot \mathbf{w}=|\mathbf{v}| \cdot|\mathbf{w}| \cdot \cos (\theta)$
and the graphical interpretation is to project the $w$ vector onto the $\qquad$ v vector and multiply the projected magnitude times the magnitude of $v$ (or vice versa). $\qquad$
$\qquad$
$\qquad$

## Vector Calculations <br> Vector cross product

If vectors $\mathbf{v}$ and $\mathbf{w}$ are defined in three-dimensional space and the plane common to them is illustrated $\qquad$ as below, the cross product between v and w is defined as

$$
\mathbf{p}=\mathbf{w} \times \mathbf{v}
$$

where $|\mathbf{p}|=|\mathbf{w}| \cdot|\mathbf{v}| \cdot \sin (\theta)$

and the angle of $p$ is orthogonal to the plane common to v and w and its direction is given by the right-hand rule
right-hand rule: the direction of $p$ is such that an observer at its tip will observe as counterclockwise the rotation through $\theta$ which brings the vector $w$ in line with the vector $v$

## Vector Calculations <br> Vector cross product

For $\mathbf{w}=w_{x} \mathbf{i}+w_{y} \mathbf{j}+w_{z} \mathbf{k}$ and $\mathbf{v}=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}$ $\mathbf{p}=\mathbf{w} \times \mathbf{v}=\left(w_{y} v_{z}-w_{z} v_{y}\right) \mathbf{i}+\left(w_{z} v_{x}-w_{x} v_{z}\right) \mathbf{j}+\left(w_{x} v_{y}-w_{y} v_{x}\right) \mathbf{k}$

In Matlab, the cross function performs this calculation

$\left\lvert\, \begin{aligned} & \gg \mathrm{v}=\left[\begin{array}{ll} \mathrm{v} & 0 \end{array}\right] ; \\ & \gg \operatorname{cross}(\mathrm{w}, \mathrm{v}) \end{aligned}\right.$		Notice here that the $w$ and $v$ vectors are expanded from two to three dimensions.	
0	0	0.8000	

## Anonymous Functions

The need for the so-called anonymous function occurs in Matlab when it is necessary to pass additional arguments through a function to another function. Here is an example to make this clear.

Given a value of the parameter $R e$, solve the following equation for $f$, with an initial estimate for $f$. Then, carry out a case study of $f$ versus values of $R e$ from 1000 through 1000000, spaced logarithmically

$$
\frac{1}{\sqrt{f}}-4 \cdot \log _{10}(\operatorname{Re} \cdot \sqrt{f})+0.4=0
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
We can use fzero to solve for $f$, given one value of $R e$
$\qquad$

## Anonymous Functions

Create a function to compute the equation error
$\qquad$ [ $=0$ when the equation is solved]
function result=fanning(f)
$\operatorname{Re=10000;}$
result $=1 /$ sqrt (f) $-4 * \log 10(\operatorname{Re*sqrt}(f))+0.4 ;$

Use fzero to find the solution

$\gg$	fzero(0fanning, 0.05)
ans $=$	
0.0077	

But now we want to solve the equation for $f$, and for many values of Re. That means we cannot set
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ the value of $R e$ in the fanning function.

## Anonymous Functions

Set up a range of $R e$ values spaced logarithmically.

$$
\begin{array}{|l|}
\hline \begin{array}{l}
\text { npoints }=100 ; \\
\text { Re}=\text { logspace }(3,6, \text { npoints }) ;
\end{array} \\
\hline
\end{array}
$$

$\qquad$
Now, we want to solve the equation for each value of $R e$, in an $m$-script like $\qquad$

```
for i = 1:npoints
 % need to use fzero to solve for f
 % for each of the Re(i) values
end
```

The problem is: How does the value of $\operatorname{Re}(i)$ get communicated "through" the built-in fzero function to the fanning function?

This dilemma is resolved through the use of an anonymous function.

## Anonymous Functions

Function $f_{\text {_ }}$ anon is defined, allowing an additional argument, $\operatorname{Re}(i)$, to be passed to function fanning

```
% m-script for case study
npoints=100;
Re-logspace(3,6,npoints);
fs = zeros(npoints,1);
fs=aros(npo;
for i = 1:npoints
 f_anon = @ (f) fanning(f,Re(i))
 -
 anon,fstart);
 fstart = fs(i)
end
```

and function fanning now needs to be modified to accommodate the additional argument

```
function result=fanning(f,Re)
result=1/sqrt(f)-4*log10(Re*sqrt (f))+0.4;
```


## Anonymous Functions

Analyzing the m-script:
Re=logspace ( 3,6, npoints) ;
Set up npoints ( 100 typical) equally spaced by the logarithm of Re between $1000\left(10^{3}\right)$ and $1000000\left(10^{6}\right)$

fs $=$ zeros (npoints, 1);	$\quad$set up an $f s$ vector for the   solutions initially filled with 0 's
fstart $=0.05 ;$	

set an initial guess for $\boldsymbol{f}$ at $\mathbf{0 . 0 5}$
$\square$ for $i=1$ : npoints solve the equation for each value of $\operatorname{Re}(i)$
f_anon = @ (f) fanning(f,Re(i));
define an anonymous function $f$ anon based on the fanning function with an identified argument $f$ and an extra argument $\operatorname{Re}(i)$

## Anonymous Functions


call fzero with the anonymous function as the first argument and fstart as the starting guess for the solution - the solution is stored in $\mathrm{fs}(i)$
$\qquad$ start $=$ fs(i) ;
use the $f s(i)$ value as the starting guess for the next solution of the equation
Create a semilog plot of the $f$ solutions vs $\operatorname{Re}$
$\qquad$
$\qquad$
$\qquad$
>> semilogx(Re,fs, 'k') ;grid
>> xlabel('Re')
> ylabel('f')
$\gg$ title('Case Study of f versus $\mathrm{Re}^{\prime}$ )

## Anonymous Functions


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

