CSCI130 Introduction to Engineering Computing Class Meeting #25

Engineering Computing and Problem Solving with Matlab

> Implementing the bisection algorithm with a Matlab function Using Matlab's debugging tools

Writing functions with function-name arguments

Example: write a Matlab function that creates an x-y plot of a function y = f(x) for $a \le x \le b$

First, create the function f(x)

function y=f(x)
y=exp(-x/4).*(2-x)-1;

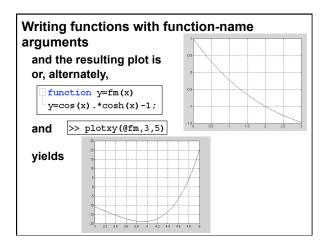
We would like to have a general plotting function,

plotxy(function_to_plot,xlow,xhigh)

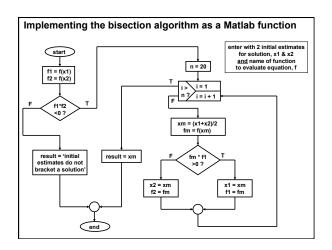
This would look like

plotxy(@f,0,3) for example

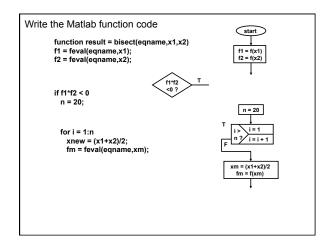
The @ indicates that f is a function, not a variable

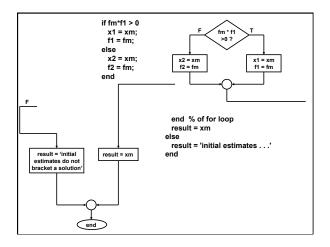

Writing functions with function-name arguments

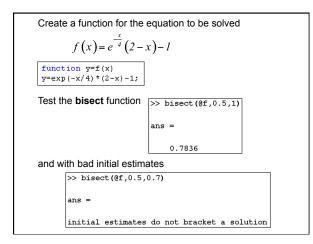
```
function result=plotxy(fun,x1,x2)
x=linspace(x1,x2);
y=feval(fun,x);
plot(x,y,'k')
grid
```

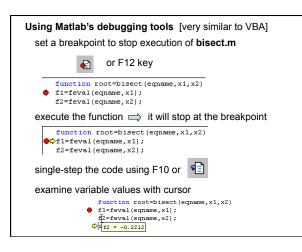

This takes advantage of the special Matlab function, feval, which evaluates a given function, here represented by fun, for an argument value x.

Then, to test the function,


>> plotxy(@f,0,3)







function result = bisect(eqname,x1,x2)	the complete
f1 = feval(eqname,x1);	bisect functior
f2 = feval(eqname,x2);	
if f1*f2 < 0	
n = 20;	
for i = 1:n	
xnew = (x1+x2)/2;	
fm = feval(eqname,xm);	
if fm*f1 > 0	
x1 = xm;	
f1 = fm;	
else	
x2 = xm;	
f2 = fm;	
end	
end % of for loop	
result = xm	
else	
result = 'initial estimates do not bracket	a solution';
end	,

