CSCI 130	Introduction to Engineering Computing	Spring 2010

		
CSCI 130	Lab #9	Page 12
Lab Workshop #9

Purpose:		incorporating partial pivoting into the Gaussian Elimination algorithm
		using message boxes with their options
	adding user forms for dedicated user interfaces

1.	Launch Excel 2007 and open Gauss.xlsm.

2.	On the spreadsheet, change the coefficients so that they appear as

		

	Run the Gauss macro (use the Developer Macro Run). What do you observe?

	__

	A limitation of this first-try Gaussian elimination algorithm is that it will fail if any pivot element becomes zero during the calculation. This occurs for the example with the 2,2 pivot. But this set of equations does have a solution, so it is unacceptable for our algorithm to fail here.

	The strategy employed to remedy this limitation is called "partial pivoting." The concept is easy to explain in words: When we encounter a pivot element that is zero (or really small), we look at the elements directly below the pivot element and find the largest one (absolute value). We then swap the pivot row with the row with the largest value. This is like swapping two equations – it doesn't change the solution. But it does provide us with a non-zero (non-small) pivot element, and the algorithm can proceed. Note: if there is no element below the pivot that is not zero (or not small), that does mean that the set of equations does not have a solution. Another word for this is that the equation set is singular.

	So, the flowchart below is a modification of part of the previous flowchart for the Gaussian Elimination algorithm (see Class17 notes). It shows a sub-procedure that has the job of swapping the pivot row with the selected row below it. After that, it checks the new pivot element. If that number is too small, it stops, sensing that the set of equations cannot be solved.

	The pivot-swap procedure is then developed in the flowchart below.

			

	Now, you will modify the VBA code in the Gauss.xlsm spreadsheet to incorporate this partial pivoting strategy.

	Modify the code in Sub Gauss as shown in the two code blocks below, adding the code in rectangles. Be careful to locate the new code correctly.

	

	

	Then, at the end of Sub Gauss, after the End Sub statement, add the following two procedures:

	

	

	Now, unless you have typographical errors or other bugs, you should be able to run the Gauss macro and get the correct solution to the equations.

	Save your workbook as GaussPivot.xlsm and close it out.

3.	Message Boxes

	You have used simple message boxes in previous exercises and applications. Now, you will take a look at the MsgBox function in more detail.

	Open a new workbook, and put your name and date in cells A1 and A2. You will create a simple Excel/VBA application that solves the quadratic equation,

		

	for given values of , , and . Enter labels a, b and c in cells A4:A6. With A4:B6 selected, using Formulas Create from Selection, transfer the labels in cells A4:A6 as names on the cells B4:B6. Check the names that were created using the Name Box. Do you note anything unusual?

	__

	Put three trial values in cells B4:B6 as shown below.

		

	Save your workbook as Quadratic.xlsm. Open the VBE and insert a module (make sure you are in the project associated with this workbook). Enter the following VBA procedure:

		

	Run this Sub, and you should see

		

	Fix any bugs until you get the program to run successfully. This illustrates the simple use of a message box.

	This VBA program has limitations. Change the value of b on the spreadsheet to 1 and run it again. What do you observe?

	__

	Why does this occur?

	__

	So, we now have to refine/improve the program to handle this situation. The key quantity that determines whether the calculation will encounter a problem is called the discriminant and is given by the formula

		

	If this quantity is negative, the quadratic equation will have complex roots; otherwise, it will have real roots.

	So, we modify the code to check for this and provide information on the situation. Make the modifications shown below:

		

	Run this modified program and confirm that it "traps" the situation when the discriminant is < 0.

	So, now our program is protected against failing when the coefficients yield an equation with complex roots. But this is not really satisfactory if we're interested in knowing what the complex roots are, at least occasionally.

	We would like a design where the program would let the person using it know that the equation has complex roots and ask whether to proceed in displaying the complex roots or just quit. This can also be done with a message box, but the syntax is a bit more complicated. Make the following changes to your code to implement this.

		

	Test this program with the coefficients that yield complex roots. Run it twice to check out the Yes and No buttons to make sure they work right.

	There are still a couple ways that this program can get fouled up. Change the value in the a cell to zero and run the program.

	What do you observe?

	__

	Why did this happen?

	__

	Let's protect against this problem too. Modify the SolveQuadratic program as shown below:
 (
increase
indent
)	

	Test this program with a zero in the a cell to make sure it "traps" that error properly.

	We still have one remaining problem that could occur. What if both the a and b cells contain zeros. Try that out.

	An additional modification is shown to the code to trap that error. Make the changes and test the program.

		

	We have used a multi-alternative If structure (If/Then/ElseIf/Else) to handle the 3 cases:
· a and b = 0
· just a = 0
· neither a nor b = 0

	It might also be possible, for whatever reason, that the a, b or c cells would be empty or contain text. We can check for that with a special function in Excel, ISNUMBER[footnoteRef:1]. We now add another layer of protection to the program. [1: Since it is an Excel function, we'll have to refer to it with Application.WorksheetFunction.ISNUMBER]

 (
increase
indent
)	
		
		
		
	

	Enter some text in one of the a,b,c cells and run the program to check that it traps this error. Then put numbers back in the cells to make sure it can still solve a normal problem.

	Save your workbook file and close it out.

4.	User Forms (Custom Dialog Boxes)

	VBA provides a very powerful tool for custom user interfaces, the User Form. In this lab, you will get a start at creating User Forms, also called Custom Dialog Boxes. Open a new workbook and save it immediately as TempConvert.xlsm. Switch over to the VBE and make sure the correct VBA project is selected in the Project Explorer window. Use the Insert menu to create a UserForm.

		

	The VBE will change in appearance with a blank userform showing along with a Toolbox palette.

	The Properties Window now becomes quite important.

		

	We will make changes to the UserForm by changing the entries in this window. Start by selecting the Caption entry with the mouse and change the caption to "Temperature Conversion", as shown in the figure below.

		

	Notice that, immediately, the caption on the userform updates.

		

	In the Properties Window, change the (Name) field to "ConvertTemperature". This renames the object that is the user form. The Properties Window should now look like

		

	Now, select the Label tool from the Toolbox palette.

		

	Click on the Label tool, then move the mouse to the userform and drag out a label rectangle that looks like
		

	Notice that when this label object is selected the Properties Window displays its properties, not those of the userform. Click on the Font property and the button to the right of that field, , and set the font to Arial, the size to 11, and set the Font style to bold, as shown below.

		
	
	Then, click OK. You may need to resize the label box to look like

		
	
	Now, click on the Text Box button in the Toolbox palette:

		

	and drag out a text box in the userform to the right of the label to look like

		

	With the text box selected, change the Name field in the Properties Window to "InputTemperature".

		

	Select the Frame Tool and drag out an Input Units frame and an Output Units frame below the previously place label and text box.

		

	Use the Caption field in the Properties Window to change the frame captions as shown.
	Now, using the label tool, place labels as shown below. You might need to stretch the frames some.

		

	Select the Option Button Tool and place drag out an option button just to the left of the Fahrenheit label in the Input Units frame. Save your workbook for safety's sake.

			

	With this option button selected, use the Properties Window to change the Name field to
	"FahrenheitInput" and change the Value field to True. The button should appear selected. It will be selected as the default input unit.

	Add option buttons next to the rest of the unit labels and change their names to "CelsiusInput", . . ., "FahrenheitOutput", etc. Change the Value field for "CelsiusOutput" to True.

	The userform should now look like

		

	Now, we need to place a couple buttons that will allow us to make things happen. Use the CommandButton tool and place the buttons as shown.

			

	Select the upper button and change its Name field to "Convert" and its caption to "Convert". Select the lower button and change its Name field and caption Field to "Quit".

		

	Now, we need to write the VBA code that executes when the Convert and Quit buttons are clicked. Start by double-clicking the Convert button. A code window should open up as shown below.

		
	Save your workbook for safety's sake. Enter carefully the block of code shown below and on the next page between the Private Sub and End Sub statements.

		

	
	
	

	

	Select View Object (Shift-F7 shortcut) and then double-click on the Quit button. You should see, appended to your previous code,

		

	Enter the one statement shown below in this Sub:
		
		
	
	In order to test your program, select Insert Module, and enter the short Sub:

		

	Save your workbook for safety's sake. When you run this Sub, the user form should appear and you can test your program. You may want to do this by single-stepping this Sub to follow the progress of the program.

	When you are testing the program, you will notice that the message box result sits right on top of the user form, making it impossible to see the units choices that were made. To remedy this, we can position the user form off to the left.

	Select the user form again from the Project Explorer and change its properties as shown below. In doing so, click on the Categorized tab in the Properties Window and bring the Position category into view. Make three changes so that category looks like

		

	Test your program again and see that the user form and the message box can be seen separately.

	Finally, you'll add an "event handler" that brings up your user form when the workbook is opened. In the VBE, double-click on the ThisWorkbook item in the Project Exporer. Change the left field at the top of the code window to Workbook (use the drop-down list). You should now see

		

	The automatically-created Workbook_Open Sub allows you to enter code that will be executed when the "event" of the workbook being opened occurs. Enter the one statement that will display the user form, as shown below

		

	Now, save your workbook and close it out. Re-open your workbook, and the user form should appear.

	

	Use your Excel/VBA application to complete the table below:

	37 C = ________ F
	212 F = ________ C
	- 40 C = ________ F

	100 K = ________ C
	1000 R = ________ F
	25C = ________ K

5.	Leave Excel and return to Windows.

End of Lab Workshop #9
image4.png
Dim n ks Integer
Din Eps As Single

Eps = 0.000001

n = Range("A") .Rows.Count

image5.png
brec (1)
Next 1
Fori=1Ton
Call Pivot(iwat, bves, n, i
If Mbs(Mwat{i, 1)) < Eps Then
HsgBox "Singular Equation Set
stop
End If
For 3 =i+1Ton
Amat (i, j) = Amat{i, j) / Awat(i, i

Application.WorksheetFunction. Index (Range ("b"), i, 1

image6.png
Sub Pivot (CoeffMat, ConstVec, n, i)
Dim ip ke Integer, k ks Integer, j ks Integer
Dim NaxPiv ks Double
NexPiv = CoffNat(i, 1)
[
Fork=i+1Tan
If ibs(Coeffliat(k, 1)) > HaxPiv Then
MaxPiv = Abs(Coeffliat (k, 1))
ip =k
End If
Next k
If ip <> i Then
For 3= iTon
Call Swap(Cosffat(i, 3], CoeffMat(ip, 3))
Hext 3
Call Swap(Constiec (i), ConstVec(ip)]
End If
End Sub

image7.png
Sub Swapi(a, b)
Din Temp ks Variant

Temp = a
a=1n
b = Temp

End sub

image8.wmf
2

axbxc0

++=

oleObject1.bin

image9.wmf
a

oleObject2.bin

image10.wmf
b

oleObject3.bin

image11.wmf
c

oleObject4.bin

image12.jpeg
Ralphie v
11/9/2008

alu|s|win |

image13.png
Option Explicit

S SolveQuadratic (
Dinm a ks Single, b As Single, c ks Single
Dim Rooti As Single, Rootz As Single

a = Range("a")
b = Range ("b")
c = Range("c_")
Rootl = (-b 3 Sarib * 2 -4 tatel) /2/a
Rootz = (-b - Sarib * 2 -4tatecl) /2 /a
BsgBox "Roots are: " & Rootl & " and " & Root2

End Sup

image14.png
Rloots ae: 1 and 2

image15.wmf
2

b4ac

-

oleObject5.bin

image16.png
Sub SolveQuadratic ()
Dim & is Single, b hs Single, c ks Single
Dim Rooti As Single, Rootz As Single
Dim Diseriminant is Single
a = Range("a")

Range ("b")
c = Range("c_")
Diseriminant =b % 2 -4 tate

If Discriminant >= O Then

Rooti = (-b + Sgr{Discriminant)) / 2 / a
Rootz = (-b - Sgr{Discriminant)) / 2 / a
HsgBox "Roots are: " € Rootl € " and " & Rootz

Else

HsgBox "Quadratic Equation has complex roots”
End If
End sub

image17.png
Sub SolveQuadratic()
Dim & s Single, b ks Single, ¢ is Single
Dim Rooti ks Single, Root2 4o Single
Dim Discriminant is Single
Din insver s String
Dim RealPart ks Single, TmagPart is Single
a = Range("a")

Range ("b")

Range (7c_")

Discriminant =h %2 -4 % a ¥ e
If Discriminant >= O Then
Rooti = (-b + Sgr{Discriminant)) / 2 / a
Rootz = (-b - Sgr{Discriminant)) / 2 / a
HsgBox "Roots are: " € Rootl € " and " & Root:
Else

insver = NsgBox ["Quadratic Equation has complex roots” & vHCrLf & _

"Da you want to see these roots?", vhYesMo!
Select Case Ansver
Case vhTes
RealPart = -b / 2 / &

DnagPart = Sqr(-Discriminant) / 2 / a
NegBox "Roots are a complex conjugate pair:” & vACILE & _
RealPart & " +- " & "i" & ImagPart
End Select
End If

End Sub

image18.png
Sub SolveQuadratic(
Dim & is Single, b hs Single, c ks Single
Dim Rooti As Single, Rootz As Single
Dim Discriminant is Single
Dim Inswer s String
Din RealPart ks Single, ImagPart As Single
a = Range("a")

Range ("b")
Range ("c_")
If a = 0 Then
Root1 = -G / b
HsgBox "With a = 0, Ot a quadratic equation, rather a linear sguation” _
& VBCELE & "Single root = " & Rootl
Else

Discriminant =h %2 -4t a ¥ e
If Discriminant >= O Then

Rootl = (-b + Sgr{Discriminent)) / 2 / &
Rootz = (-b - Sgr{Discriminemt)) / 2 / &
HsgBox "Roots are: " € Rootl € " and " & Rootz

Else

insver = NsgBox ["Quadratic Equation has complex roots” & vHCrLf & _
“Do you want to see these roats?”, vbYeslo
Select Case Ansver
Case vbYes
RealPart = b / 2 / a
TnagPart = Sqr (-Discriminant) / 2 / a
NsgBox "Roots are a complex comjugate pair:” & VECILE & _
RealPart & " +- " & "i" & ImagPart
End Select
End It
End It
End Sub

image19.png
© = Range("c_")
Ifa=0 indb = 0 Then

HsgBox "Both @ and b are = 0. There is no solution.”
ElseIf a = 0 Then

Rooti = ¢ / b
HsgBox "Uith a = 0, not a quadratic equation, rather a linear equation” _
€ VBCrLE ¢ "Single root = " & Rootl

Else

Discriminant = b % 2 - 4 * & * ¢

image20.png
Sub SolveQuadratic()
Dim a ks Single, b As Single, ¢ As Single
Dim Root1 As Single, RootZ is Single
Dim Discriminant is Single
Dim Ansver is String
Dim RealPart is Single, ImagPart As Single
Dim NonNurber 4s Boolean
NomNumber = Not Application.orksheetFunction. IsNurber (Range ("a”})
NomNumber = Not Application.lorksheetFunction. IsNurber (Range ("b"}) Or NonNumber
NomNumber = Not Application.lorkshestFunction. IsNurber (Range ("c_")) Or NomNumber
If Nomlumber Then
HogBox "Can't solve the problem.” & VHCELE & _
"At least ome of the a,b,c cells dossn't have a mumber im it.”
Else
a = Range("a")
b = Range ("b")
© = Range ("e_")
Ifa=0 indb = 0 Then

image21.png
RealPart & " 4= " & "i" & ImagPart
End Select
End If
End If
End If
End Sub

image22.png
Insert Fomat Deb

12 Class Module

image23.png
N Fl
"

" Cont |

o Ix A

e MO

RS b

rk

i}

b09a.xla)
PERSONALYLS)

image24.png
[UserForm1 UserForm

e p—

UserFormt
lBackColor & a+s000000FE:
lBorderColor I &+00000125
lporderstyle 0. fmBorderstylehione
Icaption UserFormt

lcvele 0 fmCycleAlForms
lorawBuffer 32000

JEnabled True

JFont Tahoma

IForeColor I &+s00000125

JHeicht 120

lHelpContexto 0

[keepscrolBarsisble 3 - fmscrolarsgoth

Left 0

IMouselcan (one)

[MousePointer 0 - raMousePointerDefault
Jicure. (one)

liturealinment 2 - FfictureAlgnmentCent
Jictresiettnrls. 1 - Fopich rsoebnclecin. 2

image25.png
serformt hapom =]
habeic | categoried |

UserFormt
O] ass000000Fe:
M a+is00000128
0 FBorderstyleNione

Temperature Conversion
0 fmCycleAlForms
32000

True

image26.png

image27.png
[ConvertTemperature UserForm —

Biphabetie | categorized |

image28.png

image29.png

image30.png

image31.png
o Font st

il lack =

B Avisl Narow

B Avial Nanow Special G

% Arial Narrow Special G
il Specil 51

T il Speciel 62]

Effects Semple

I~ Stikeout

™ Undeine AaBbYyZz
Script

image32.png
Enter :
OTemperaturet)

image33.png
Connok |

image34.png
Enter o)
Temperature o o
Value Bty

image35.png
InputTemperature TextBox |

[p—

InputTemperature 5
lautosice Fakse

image36.png
Contiols |

kA abl

P 2o
sy AR

i}

image37.png
Temperature Convers

Enter

Temperature

Value

Input Units Output Units

image38.png
Input Units
Fatverhel
Cebivs
Kehins

Rankine:

Output Units
Fatverhel
Cebivs
Kehins

Rankine

image39.png
Connok |

N Al EE
AR]
o ils '

image40.png
JAHIAAT)
Input L v

o
88 ratverher
Bad

ol

_

Kelvins

Rankine:

NIRRT

=

S

S

image41.png
Temperature Convers

Enter

Temperature

Value

It Uies Output Uts

@ Fatvenhet: C Fahvenhet
1 cobins @ cobins
1 Kebins 1 Kebins
1 Rarkine 3 Rankine

image42.png
X
Contok | 2
N A Value
v e it
= 2 ~
-

image43.png
Temperature

Value

& Commandsu

image44.png
Enter

Temperature

Value

Input Units

o

%
%
%

Fahvenhett
Colivs
Kelvins

Rankine:

%

o

%
%

Convert

Quit

Output Units

Fahvenhett
Colivs
Kelvins

Rankine

image45.png
Option Explicit
Private Suh Convert Click()

End sub

image46.png
Dim TempIn As Double, TempOut is Double
Dinm Icode As Integer, Ocode As Integer
TempIn = InputTemperature.Value

If FahrenheitInput Then

Icade = 1

Elself CelsiusInput Then
Icode = 2

ElseIf RelvinsInput Then
Icode = 3

Else
Icode = 4

End If

If FahrenheitOutput Then
ocode = 1

ElseIf CelsiusOutput Then
ocode = 2

ElseIf RelvinsOutput Then
ocode = 3

Else
ocode = 4

End If

image47.png
If Icode = Ocode Then
HsgBox "Converted Temperature = " & TempIn
Else
Select Case Icode
Case 1 'Fahrenheit Inpuc
Select Case Ocode
Case 2
Tempout = FtoC (TempIn)
case 3
Tempout = FtoK(TempIn)
Case 4
Tempout = FtoR (TempIn)
End Select
Case 2 'Celsius Input
Select Case Ocode
case 1
Tempout = CtoF (TempIn)
case 3
Tempout = CtoK(TempIn)
Case 4
Tempout = CtoR (TempIn)
End Select
Case 3 'Relvins Input
Select Case Ocode
case 1
Tempout = Ktof (TempIn)
Case 2
Tempout = KeoC (TempIn)
Case 4
Tempout = KtoR (TempIn)
End Select
Case 4 'Rankine Input
Select Case Ocode

case 1
Tempout = RtoF (TempIn)
Case 2
Tempout = ReoC (TempIn)
case 3
Tempout = RtoK(TempIn)
End Select
End Select
Tempout = Application.VorksheetFunction.Round(Tempout, 2]
HMsgBox "Converted Temperature = " & TempOut

End If
End Sub

image48.png
Funetion FroC(degF) As Double

FtoC = (degF - 32) / 1.8

End Function

Function FtoK(degF) As Double
FtoK = (degF - 32) / 1.8 + 273.15

End Function

Function FtoR(degF) As Double
FtoR = degF + 459.67

End Function

Function CtoF (degC) As Double
CtoF = degC * + 32

End Function

Function CtoK(degC) ks Double
CtoK = degC + 273.15

End Function

Function CtoR(degC) As Double
CtoR = (degC + 273.15) * 1.8

End Function

Function KtoF (K) As Dowsle
ReoF = K * 1.8 - 459.67

End Function

Function KeoC(K) ks Dowsle
ReaC = K - 273.15

End Function

Function KtoR(K) ks Dowsle
KeoR = K * 1.8

End Function

Function RtoF (degR) As Double
REGF = degR - 459.67

End Function

Function ReoC(degR) As Double
ReoC = degR / 1.8 - 273.15

End Function

Function RtoK(degR] As Double
REoK = degR / 1.8

End Function

image49.png
Private Sub Quit_Click()

End Sub

image50.png
Private Sub Quit Click(]
Unload ConvertTemperature
End Sub

image51.png
Option Explicit
S TemperatureConversion()
ConvertTemperature . Show

End Sub

image52.png
& Position
Height
Left
StartUpPosition
Top
\width

120
@
0-Manual
120

240

image53.png
[workbook =] [open

Option Explicit

Private Sus Vorkbook Open()

End sub

image54.png
Option Explicit

Private Sus Vorkbook Open()
ComvertTemperature. Show
End Sub

image1.jpeg
~ =

© NN

© o w

=}

image2.emf
Normalize row i

Pivoting refinement

and check for singularity

pivot swap

|A

ii

|<eps

?

j=i+1

j=j+1

j>n

?

T

F

a

ij

= a

ij

/ a

ii

b

i

= b

i

/ a

ii

set error

code for

singular

exit

T

F

image3.emf
maxpiv= a

ii

ip= i

k=i+1

k=k+1

k>n

?

T

F

|A

ki

|>

maxpiv?

maxpiv= a

ki

ip= k

ip<> i

?

T

F

j=i

j=j+1

j>n

?

T

F

T

F

swap a

ij

with a

ip,j

swap a

ij

with a

ip,j

Pivot

swap

