CSCI 130	Introduction to Engineering Computing	Spring 2010

		Name: __________________________
CSCI 130	Lab #6	Page 2

Lab Workshop #6

Purpose:		use the macro recorder to create an automated procedure
		modify and clean up VBA code using the Visual Basic Editor
	create two VBA "Sub" procedures from scratch and test them
	create a VBA user-defined "Function" from scratch and test it

1.	Launch Excel 2007. Click the Office button, Excel Options button, and, with Popular selected, check the box Show the Developer tab in the ribbon. Click OK.

2.	You may find it useful to refer to the notes from Class10. You can follow the steps starting on slide 12 for recording a macro.

	Starting with a blank workbook, use the macro recorder to create a VBA "Sub" procedure called "SpecialGreen", with shortcut key, Ctrl-Shift-G, attached to This Workbook, that formats a cell with the following characteristics:

· a light green background color
· font: bold, italic, 10-pt, arial
· bold, single border around cell
· alignment: horizontally centered
· number format: 3 places to the right of the decimal point displayed

	Test the macro on another cell to make sure it works. Clean up the VBA code using the Visual Basic Editor, removing any statements that are unnecessary. In the comment area of the VBA code, add a comment, starting with an apostrophe ('), with your name, lab section and the date.

	Test the macro again on a selection of several cells. Save the workbook as lab6a.xlsx and close it.

3.	Open a new workbook.

	You will now create a Sub that illustrates how information can be exchanged between cells on the spreadsheet and variables in the VBA procedure.

	Start in the spreadsheet and enter the following values in the cells shown:

		[image: TwoCells]

	Switch to the VBE (Alt-F11) and, with the current project selected in the Project Explorer window, select Insert Module from the menu. Enter the following VBA code:

		[image: TwoCellsCode]

	The purpose of this Sub is to switch the values in cells A1 and A2. It's necessary to use a variable in VBA for temporary storage of the cell A1 value. The switch takes place as shown in the diagram on the next page.
[image:]

	The three statements in the program are represented by the numbers 1, 2 and 3 in the diagram.

	Switch back to the spreadsheet and run the procedure. You can do this from the Developer ribbon, Code frame and Macros button, or Alt-F8 shortcut. In the Macro dialog box, double-click on the SwapValues entry to run it. You should see the values in cells A1 and A2 switch. Run the macro again and they should switch back.
[image:]	Using Insert Form Controls on the Developer ribbon, add a rectangular button ([image: Button]) to the spreadsheet that runs the macro. Change the button label to "Switch." Add your name and the date to the spreadsheet in cells B1 and B2.

	Demonstrate your macro to your TA and have him/her initial here.

	Save the workbook as lab6b.xlsx and close it out.

4.	Open a new workbook. In this workbook, you will create a user-defined function (UDF). User-defined functions are like the built-in functions in Excel (SQRT, EXP, LN, VLOOKUP, IF, etc.) except that you create them. The ability to create your own functions really expands your horizon with Excel.

	You will create a function here that implements the following calculation:

				We'll call this function SgnSqr() in Excel.

	Open the VBE and insert a new module (Insert Module). You should take care to note, in the Project Explorer window, that your current workbook's project is selected before you insert the module. In the blank code window, type in the following VBA code:

		[image: SgnSqrCode]

	Switch back to the spreadsheet to try the function out. Enter a value of 2 in cell B2. In cell C2 enter the formula:

		=SgnSqr(B2)

	What is displayed in cell C2? _______

	Change the value in cell B2 to –2. What now is displayed in cell C2? _________

	Switch back to the VBE window. Add a comment (starting with an ') just below the Function statement with your name and the date.

	There are some features of this Function that should be pointed out, even though we'll cover all this in detail a bit later.

	1) a UDF starts with the Function statement and finishes with the End Function statement[footnoteRef:1] [1: You've noticed that the bracketing End Sub or End Function statements are inserted automatically by the VBE after you type in the Sub or Function statements.]

	2) the SgnSqr function has a formal argument, x, also called a "dummy" argument

	3) the VBA code makes use of an If ... Then ... Else ... End If statement structure to implement the 	two-way design of the function

	4) the result of the function's calculation, in either branch of the If statement, is assigned equal to the 	name of the function, SgnSqr.

	Save this workbook as lab6c.xlsx and close it out.

5.	Leave Excel and return to Windows.

End of Lab Workshop #6
image4.emf

image5.png

image6.wmf
(

)

2

2

xx0

fx

xx0

ì

³

=

í

-<

î

oleObject1.bin

image7.png
Function SgnSar (x
If x >= 0 Then
sgnsar = x * 2
Else
sgnsar
End If
End Function

image1.png
‘M‘_‘

image2.png
Sub SwapValues ()
TempValue = Range ("A1") .Value
Range ("A1") .Value = Range("A2") .Value
Range {"32") .Value = TempValue

End Sub

image3.emf
A1

A2

TempValue

1

2

3

Spreadsheet

VBA

