Homework \#10

Cut and paste Matlab output into a Word document. Make sure the assignment has your name on the first page.

1. Problem 8.11 on page 310
2. Problem 8.23 on page 314
3. Motion of a four-bar linkage

A four-bar linkage is illustrated in the figure below. Such linkages are designed by mechanical engineers to transmit mechanical movement in various ways.

Member AD is anchored to a supporting base and does not move. Member AB rotates about point A , resulting in a reciprocating movement of members BC and CD . All motion is in the plane of the page. Therefore, angle θ_{2} changes in response to a change in angle θ_{1}. This motion is therefore constrained by the equation

$$
\overline{A D}=\overline{A B} \cos \theta_{1}-\overline{C D} \cos \theta_{2}+\sqrt{\overline{B C}^{2}-\left(\overline{C D} \sin \theta_{2}-\overline{A B} \sin \theta_{1}\right)^{2}}
$$

Suppose $\overline{A B}=1.5 \mathrm{~m}, \overline{B C}=6 \mathrm{~m}, \overline{C D}=3.5 \mathrm{~m}$, and $\overline{A D}=5 \mathrm{~m}$.

Set up a Matlab function to determine angle θ_{2}, given a value of angle θ_{1}, for example, 45°. In your function, use a Matlab solver function, such as fzero or fsolve.

Create an m-file script that carries out a case study of θ_{2} versus θ_{1}. Your m-file should create a graph of this relationship.

