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ABSTRACT
The accuracy of a finite element model for design and 

analysis of a metal forging operation is limited by the 
incorporated material model’s ability to predict deformation 
behavior over a wide range of operating conditions. Current 
rheological models prove deficient in several respects due to the 
difficulty in establishing complicated relations between many 
parameters. More recently, artificial neural networks (ANN) 
have been suggested as an effective means to overcome these 
difficulties. 

To this end, a robust ANN with the ability to determine flow 
stresses based on strain, strain rate, and temperature is 
developed and linked with finite element code. Comparisons of 
this novel method with conventional means are carried out to 
demonstrate the advantages of this approach.

INTRODUCTION
Finite element modeling of manufacturing processes has been 

gaining wider acceptance over the last several years. Modeling 
prior to the start of actual production can save considerable 
time, effort, and money. While modeling may provide these 
benefits, it must be kept in mind that finite element software can 
only provide accurate simulations of a "real" process if 
appropriate material models are utilized. 

In this paper a novel material model is presented and 
compared to conventional models. For lack of an exact 
mathematical model, an intelligent algorithm, the ANN, will be 
used to map relationships between the hot forging parameters 
and the flow stress of the material. The ANN learns the patterns 
and offers robust and adaptive processing capabilities by 
implementing learning and self-organization rules.
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In the present work, an ANN is generated and trained based 
on physical testing of 6061 aluminum as found in published 
literature [1]. This trained network is then used as the material 
model, which when linked with a commercial finite element 
code, provides a model capable of more accurately reflecting 
actual experience. Much of this results from a robust ANN’s 
ability to predict outputs between, and to some degree, outside 
the bounds established by a training set. For this application, 
values of strain, strain rate, and temperature not matching the 
family of curves used for training can be submitted to the 
network, and intermediate values of flow stress found. 

The conventional modeling approach requires experimental 
data curves to be fit to some form of hardening law and 
intermediate values interpolated by some means. While this 
may not be particularly difficult, the curve fitting process itself 
can be exceptionally tedious and in many cases does not 
produce accurate fits of the data. The ANN is much simpler to 
implement. Set up the network, train it, submit input values, and 
output is generated.

To these ends, initially, a review of conventional material 
models and their limitations will be presented. The various 
factors leading to difficulties in addressing real problems will be 
summarized. The development and use of artificial neural 
networks will be covered with the specific aim of developing an 
unconventional material model for linking with finite element 
code. 

Conventional and ANN-based material models are then 
developed for 6061 aluminum using published data. The 
training of the ANNs is accomplished using MATLAB’s Neural 
Network Toolbox. The conventional model is used directly with 
the commercial finite element code, ABAQUS. The ANN-
Copyright © 2005 by ASME



based model requires the generation of Fortran code that is 
linked by means of a subroutine within ABAQUS.

BACKGROUND

Conventional Material Modeling

Many manufacturing operations require material deformation 
well beyond the elastic limit and as such require elasto-plastic 
models. For the most part, the models differ in their approach to 
describing the plastic portions of deformation (i.e. hardening 
behavior). Typically, finite element codes treat the elastic and 
plastic portions of strain separately as shown in Eq. (1).

ε εe εp+ σ
E--- εp+= = (EQ 1)

Several significant difficulties arise when attempting to 
model material behavior beyond yield. As shown in Fig. 1, real 
materials may exhibit difficult to characterize behavior once 
plastic deformation begins to take place. While many materials 
display strain flattening under a narrow set of conditions, other 
behaviors result when outside that range. Strain softening and/or 
oscillating flow stresses may occur due to dynamic 
recrystallation, recovery, or other somewhat poorly understood 
phenomenon.
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Figure 1.   a) Strain flattening and b) strain 
softening behavior [2].

Typically, forging processes assume that flow stresses, σf, 
follow some form of the power law. Again treating elastic and 
plastic strains separately, the Ramberg-Osgood relation (Eq. (2)) 
incorporates the power law treatment for plastic portion of 
deformation. The reference stress, K, and strain hardening 
exponent, n are determined through curve fitting a stress/strain 
(σf/ε) diagram obtained from compression testing the material 
to be modeled.

ε σ
E
---

σf
K
-----⎝ ⎠

⎛ ⎞

1
n
---

+= (EQ 2)

If the material is being hot worked (i.e., many forging 
processes) the strain rate is substituted for strain as given by Eq. 
(3).
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To more accurately model behavior at elevated temperature 
the kinetic rate equation Eq. (4) is frequently employed:

ε· Aσf
ne

Q
RT-------–

= (EQ 4)

where ε is the true strain rate as before, A a constant, Q is the 
activation energy, R the universal gas constant, and T the 
temperature is Kelvin. 

Sellars and Tegart [3], suggest a somewhat more complicated 
form Eq. (5) based on deformation as a thermally activated 
process:

ε· A ασfsinh( )n'e
Q

RT-------–
= (EQ 5)

where an additional constant α is required. Other more 
complicated forms of the power law have been suggested to 
more adequately model behavior [4][5]. Severe difficulties arise 
in fitting the above equations to actual test data. For each of the 
above cases, compression tests are performed and the constants 
determined through curve fitting. Constant strain rate testing 
must be employed using several different strain rates and 
temperatures [6][7]. 

When constitutive models are used, one of the above 
equations is fit to empirical data. Obviously, some are easier to 
fit than others. Eq. (5) requires that four constants be 
determined, and depending on the methods used, considerable 
errors may be generated [8]. In general, the fits are only 
properly obtained using steady state stresses. 

Neural Networks

Over the last decade, several artificial intelligence tools such 
as artificial neural networks (ANN), fuzzy logic, and genetic 
algorithms (GA) have been introduced and applied in the field 
of manufacturing process engineering [9][10]. They provide for 
more accurate models than the available analytical ones. More 
recently, artificial neural networks (ANN) have been proposed 
to describe the material flow stress under the considered 
processing conditions [11][12][13][14].

The general idea behind artificial neural networks is to 
emulate the signal processing scheme used by nature. Several 
dendrites accept input that a given neuron processes before 
exiting at the axon. The axon then in-turn transmits a signal to 
another neuron’s dendrites. In this way information is processed 
or modified appropriately as it pass through the nervous system. 
Artificial neural networks have performance characteristics 
similar to biological neural networks and are based on the 
following assumptions [15]:
Copyright © 2005 by ASME



• Information processing occurs at many simple elements 
called neurons.

• Signals are passed between neurons over connection links.
• Each connection link has an associated weight, which, in a 

typical neural net, multiplies the signal transmitted.
• Each neuron applies an activation function (usually nonlin-

ear) to its net input (sum of weighted input signals) to deter-
mine its output signal.

A schematic of a simple multilayer artificial neural network is 
shown in Fig. 2. Each of the inputs is connected to each of the 
first hidden layer neurons and each of the first hidden layer 
neurons connects to each of the second hidden layer neurons. 
Finally, the second hidden layer combines to form a single 
output.
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Figure 2.   Schematic of a simple artificial neural 
network architecture.
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The ability of a network to mirror behavior results from the 
number of neurons, the number of layers, their 
interconnectedness, and by the transfer or activation functions 
chosen. Transfer functions vary from simple McCulloch-Pitts 
neurons [16] as given by Eq. (6) and Fig. 3 to those provided by 
Fig. 4, Fig. 5, and Eq. (7).

 a hardlim n( ) 1 if n 0≥
0 otherwise⎝ ⎠

⎛ ⎞= =

a

p
0

+1

-b/w

-1

a = hardlim(wp+b)
Figure 3.   Hardlim transfer function within MATLAB, 
where W is the weight(s), p the input(s), and b the bias.

(EQ 6)
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Figure 4.   Linear transfer function, single-input 
purelin neuron.

Another commonly employed transfer function, tan-sigmoid, 
is provided by Eq. (7) and is shown graphically in Fig. 5.
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a = tansig(wp+b)
Figure 5.   Tan-sigmoid transfer function, single-
input tansig neuron.

(EQ 7)

As an example, the material model required for forging 
requires the determination of flow stress as it depends on strain, 
strain rate, and temperature; Eq. (8) shows the matrix form for 
the hidden layer with strain, strain rate, and temperature as 
inputs.

tansig

w111 w112 w113

w121 w122 w123

… … …
w1s1 w1s2 w1s3

ε

ε·

T

b11

b12

…
b1s

+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ a1

a2

…
as

= (EQ 8)

The subscript s refers to the particular neuron (i.e., s equals 
the number of neurons per input value in a layer). The hidden 
layer values, a, are then fed into the output layer as shown in 
Eq. (9) which results in a single value for the flow stress. The 
dot product in this case functions the same as a linear transfer 
function. 
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Feedforward Backpropagation

Feedforward backpropagation (FBP) networks are commonly 
utilized for function approximation. The presentation above 
describes the feedforward portion of the network. 
Backpropagation refers to the particular method of adjusting or 
correcting the weights and biases to produce a network output 
consistent with the training set. This is accomplished by 
presenting a training set consisting of inputs that result in a 
known output. The weights and biases are initialized, the inputs 
present and an output determined. The output is compared 
against the target and the error determined. This error is used to 
adjust the weights and biases starting with the last layer and 
working backwards through the network. This procedure is 
repeated until an acceptable error is achieved. Several 
backpropagation schemes are available. The Levenberg-
Marquardt (LM) algorithm, a variation of Newton’s methods is 
typically efficient, from a computational perspective, and has 
proven to provide reasonable results [17].

Modeling Difficulties

If the number of neurons is excessive, or training carried out 
for too many epochs, the network may produce wild swings 
developing a greater number of inflections than the data 
producing overfitting (see Fig. 6). 

overfit

real function

Figure 6.   Example demonstrating overfitting.

Convergence, another issue, can result when training 
produces a network that may have found a local minimum, but 
not a global minimum. The learning rate specified and many 
times the initial conditions (i.e., starting values of the weights 
and biases) can produce a non-ideal solution as multi-layer 
networks may have many local minima.

If prior knowledge about possible relations between particular 
input variables and expected output exists, it is many times 
beneficial to include those relations through modification of the 
inputs. In the case of flow stresses, it is known that the log of the 
4

stress may relate linearly to the log of the strain rate. So, it may 
make sense to provide the network with log strains or strain rate 
in addition to or instead of strains and strain rates.

Additionally scaling or normalizing the input variables and/or 
training values may enable the transfer functions to better 
handle the data, though with the added complication of re-
processing the output from the trained network.

Bayesian Regularization

Bayesian regularization (BR) addresses overfitting, or 
improving generalization, by attempting to reduce the model 
complexity to the minimum necessary for reasonable 
performance. Bayesian methods automatically incorporate the 
principle of "Occam’s razor" which states that the simplest 
model that adequately fits the data should be preferred over 
more complex representations [18][19][20]. 

Bayesian regularization adds a term to the performance 
function, or squared errors, used when compared targets to 
ANN output. If ED represents the squared error and EW the sum 
of squares of the weights, then a modified performance index 
can be developed Eq. (10).

F βED αEW+= (EQ 10)

where α and β are objective function parameters. As β grows 
larger and α grows smaller, then network errors are forced to be 
smaller. If the reverse is true, training attempts to minimize the 
squared weights. Decreasing the values of the weights aids in 
smoothing the network response and should improve 
generalization. 

6061 ALUMINUM MODEL DEVELOPMENT
The material models that follow, conventional and ANN, are 

both developed from published literature (Prasad, et al., 1997). 
For comparison purposes, an FEA model of the simple 
compression of a billet, 0.015 m tall by 0.010 m diameter, was 
carried out at 450ºC. The compression is performed between 
two rigid dies with a coefficient of friction of 0.15 at the 
interface. For purposes of simplifying the model, the process 
was considered isothermal without adiabatic heat rise. 
Compression models for strain rates 0.01, 0.1, and 1.0 through 
strains of approximately 0.5 were generated for conventional 
and ANN material models for comparison.

The flow stress curves that follow, Fig. 7 and Fig. 8, provide 
data for temperatures of 300 and 550ºC. The curves were 
digitized to provide numerical input for the ANN training. In 
addition, the same literature provides tabular flow stress data for 
several strains and strain rates at 450ºC as shown in Table 1.
Copyright © 2005 by ASME
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Figure 7.   6061 aluminum flow stress as a function 
of strain for 300ºC.
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Figure 8.   6061 aluminum flow stress as a 
function of strain for 550ºC.

Table 1: Flow stress (MPa) at 450ºC.

Rate/Strain 0.1 0.2 0.3 0.4 0.5

0.001 19.6 19.5 19.8 19.9 20.4

0.01 30.2 30.9 31.5 32.1 32.6

0.1 42.3 43.0 44.4 45.1 45.6

1.0 60.5 63.0 64.5 64.4 64.3
5

Conventional Material Model 

ABAQUS provides two conventional material models; one 
using the power law approach and another by directly inputting 
tabular values for strain, strain rate, and flow stress as provided 
above. ABAQUS determines strain rate dependence using the 
overstress power law as given by Eq. (11), a slight variation on 
Eq. (3). The values for the coefficient, 3.83, and exponent 0.33, 
were determined based on Fig. 9 using 0.3 strain as generated 
from Table 1.

ε· plastic D
σflow

σstatic yield
------------------------ 1–⎝ ⎠

⎛ ⎞
p
 for σflow σstatic yield≥( )= (EQ 11)

For implementation of either the overstress power law or the 
tabular based model, ABAQUS requires estimation of static 
yield stress and elastic modulus, in this case at 450ºC. Values of 
15 MPa, and 54 GPa were used for static yield and modulus, 
respectively.

Figure 9.   Curve fits for all strains at 450ºC.
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Neural Network Development

As a starting point, values extracted from the true stress 
versus true plastic strain curves, Fig. 7 and 8, were used for 
training several networks with varying numbers of neurons. The 
initial training set is comprised of 1008 total data points, split 
evenly for 300ºC and 550ºC, with equal numbers for points for 
each strain rate (i.e., 126 points for each separate curve, four 
curves per temperature). An additional set of tabular training 
data consisting of flow stresses at strains of 0.1, 0.2, 0.3, 0.4, 
and 0.5 for strain rate of 0.001, 0.01, 0.1, and 1 for temperatures 
of 300, 350, 400, 450, 500, and 550ºC were also supplied for 
training once deemed necessary.

Table 2 below shows various conditions of the data as 
modified prior to presentation to a network. Table 3 shows a 
sample of the results obtained for selected attempts at training 
using differing data sets, algorithms, and networks architectures 
Copyright © 2005 by ASME



along with the "best" results obtained from five training 
attempts under each condition, basically determined through 
inspection of the cuves produced.

The figures that follow, show the progression of increased 
network performance as the data is modified due to anticipated 
relationships and as the network becomes more complex. 
Bayesian Regularization is also employed in a effort to prevent 
overfitting and establish the appropriate number of parameters.

The first set of figures (Fig. 10 through 13) show the 
performance of the 50 neuron LM trained network which 
produces reasonable results for the training set as demonstrated 
by the very low mean squared error and the R value of 1. When 
presented with intermediate values of strain rate, wild swings 
occur, indicating a lack of robustness.

The 8-3 neurons BR trained network (Fig. 14 through 19) 
produces better response for the training set and intermediate 
values of strain and strain rate, but not for intermediate 
temperatures.

The final resulting network of 15 input neurons followed by a 
second hidden layer of 3 neurons using BR training (Fig. 20 
through Fig. 26) has the ability to almost perfectly match the 
targets when queried using the training input values. It also 
produces very accurate results when values of strain from 0 to 
0.5 at 0.001 intervals are supplied. When intermediate values of 
strain rate (0.005, 0.05, 0.5, and 5) are submitted, the curves 
produced appear to reflect that which would be anticipated 
based on experience. The final trial, establishes the network 
output for temperatures of 375 and 450ºC at 0.001, 0.01, 0.1, 
and 1.0 values of strain rate.

Table 2: Training sets.

Data Set Data Condition

A
 ε( )ln , ε·( )ln , σ( )ln , 1

T---

B
normalized values of ε( )ln , ε·( )ln , σ( )ln , 1

T
---

C
normalized values of ε( )ln , ε·( )ln , σ( )ln , 1

T--- , 

plus tabular data

Table 3: Training attempts.

Data 
Set

BP
Algo-
rithm

Neurons Epochs MSE Param-
eters

R

A LM 50 50 0.000511 NA 1.000

B BR 8-3 500 0.103 51.4/63 1.000

C BR 15-3 4575 0.287 88.57/
112

0.999
6

Figure 10.   50 neuron LM network output using 
data set A for 300ºC.

Figure 11.   50 neuron LM network output using data 
set A for 550ºC.

Figure 12.   50 neuron LM network output using data 
set A for 300ºC at intermediate strain rate values.
Copyright © 2005 by ASME



Figure 13.   50 neuron LM network output using data 
set A for 300ºC at intermediate strain rate values.

Figure 14.   8-3 BR neuron network output using data 
set B for 300ºC.

Figure 15.   8-3 BR neuron network output using data 
set B for 550ºC.
7

Figure 16.   8-3 BR neuron network output using data 
set B for 300ºC at intermediate strain rate values.

Figure 17.   8-3 BR neuron network output using data 
set B for 550ºC at intermediate strain rate values.

Figure 18.   8-3 BR neuron network output using data 
set B for 375ºC at intermediate strain rates.
Copyright © 2005 by ASME



Figure 19.   8-3 BR neuron network output using 
data set B for 450ºC at intermediate strain rates.
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Figure 20.   15-3 BR neuron network output using 
data set C for 300ºC.
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Figure 21.   15-3 BR neuron network output using 
data set C for 550ºC
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Figure 22.   Linear regression for the 15-3 BR 
neuron network.
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Figure 23.   15-3 BR neuron network output using 
data set C for 300ºC at intermediate strain rates.
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Figure 24.   15-3 BR neuron network output using 
data set C for 550ºC at intermediate strain rates.
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Figure 25.   15-3 BR neuron network output using 
data set C for 375ºC.
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Figure 26.   15-3 BR neuron network output using 
data set C for 450ºC.

ANN IMPLEMENTATION WITHIN FINITE ELEMENT 
COMPARISON WITH CONVENTIONAL MATERIAL 
MODELS

The weights and biases from the 15-3 neural network 
developed above were input into a FORTRAN program that 
produces the feedforward portion of the ANN. ABAQUS, 
through its VUMAT capability calls the program, which 
includes definitions for the yield surface (based on Von Mises 
stresses), the flow rule, and the evolution law (i.e. hardening 
behavior). 

Figure 27 through Fig. 29 provide a comparison of a finite 
element model using the conventional power law and the 
tabular data based approach as provided by ABAQUS with the 
linked ANN material model approach. The figures show true 
stress strain curves generated by each modeling approach along 
with experimental test results from the published literature. 

The figures clearly demonstrate that the ANN material model 
9

possesses a superior ability to mirror experimental results. The 
power law model only produces reasonable results once 
significant strain has occurred and for only a rate of 0.1. This 
results from the curve fit straying from the actual values at 
lower and higher rates. The tabular based model provides a 
more reasonable approximation, but it should be noted that 
values of static yield stress and elastic modulus had to be 
estimated for input into the model. The tabular model also 
yields a less smooth or rounded curve as might be expected 
when examining experimental data at 300 or 550ºC. The ANN 
model does not require yield estimates as it has the ability to 
supply flow stress values for the entire range of strain.
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Figure 27.   Compression at 450ºC for power 
law model compared with experimental data.
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Figure 28.   Compression at 450ºC for tabular 
model compared with experimental data.
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Figure 29.   Compression at 450ºC for ANN 
model compared with experimental data.

CONCLUSIONS
The above work demonstrates the ability of an ANN material 

model, when implemented within a commercial finite element 
code, to produce virtual models more closely matching 
experimental experience as compared to conventional material 
modeling methods.
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