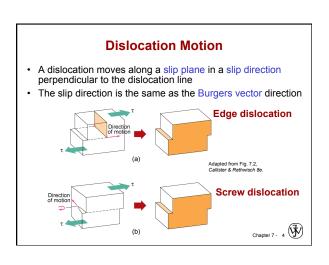
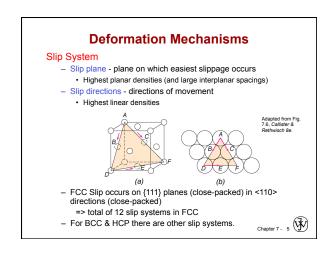
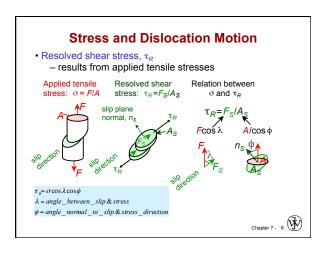
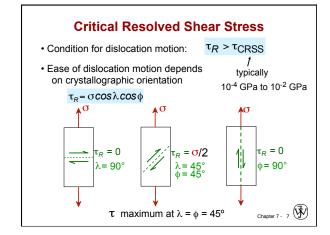
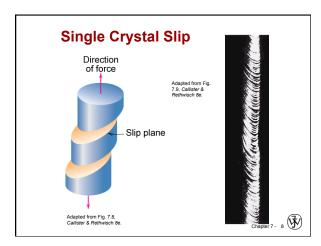

Chapter 7: Deformation & Strengthening Mechanisms

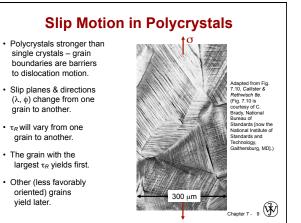

ISSUES TO ADDRESS...

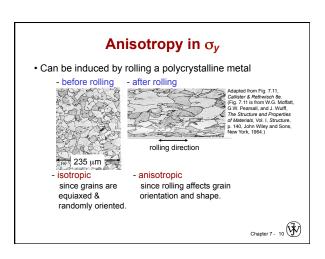

- Why are the number of dislocations present greatest in metals?
- · How are strength and dislocation motion related?
- · Why does heating alter strength and other properties?

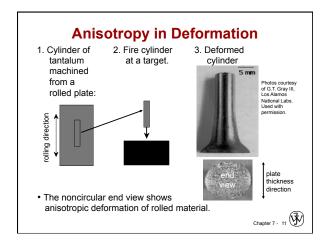


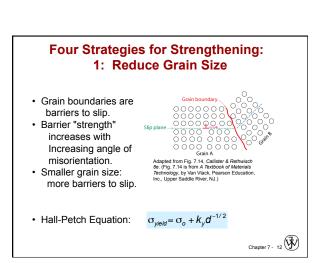


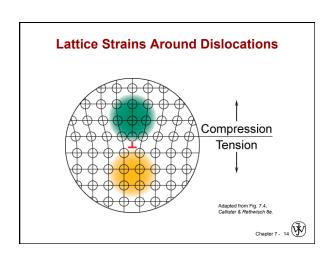

Dislocation Motion Dislocation motion & plastic deformation • Metals - plastic deformation occurs by slip – an edge dislocation (extra half-plane of atoms) slides over adjacent plane half-planes of atoms. Shear stress A B C D C Slip of slip of

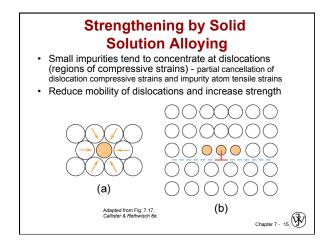


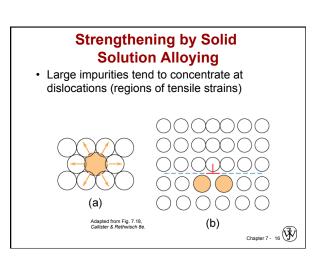




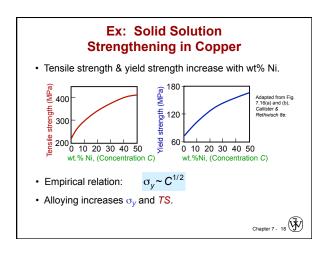


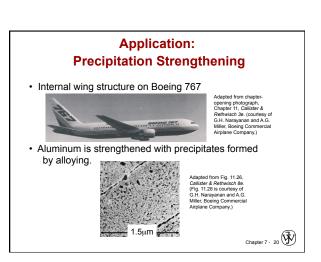


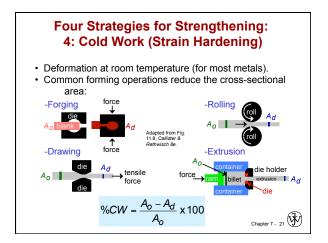


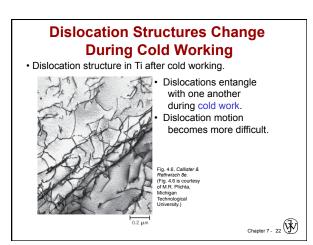


Four Strategies for Strengthening: 2: Form Solid Solutions Impurity atoms distort the lattice & generate lattice strains. These strains can act as barriers to dislocation motion. Smaller substitutional impurity Larger substitutional impurity """ "" Impurity generates local stress at A and B that opposes dislocation motion to the right.

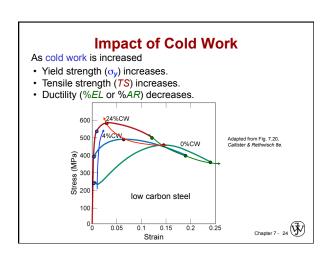

Chapter 7 - 13

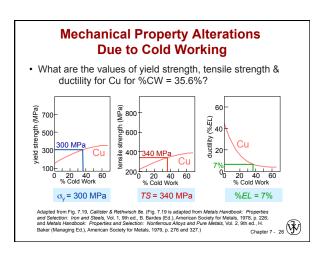


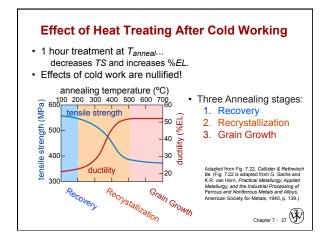


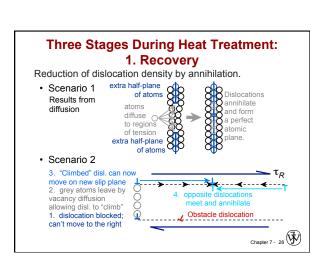


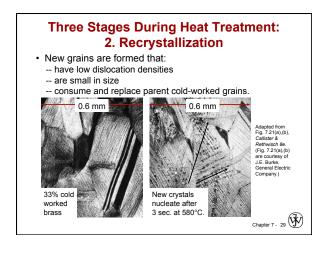
Four Strategies for Strengthening: 3: Precipitation Strengthening • Hard precipitates are difficult to shear. Ex: Ceramics in metals (SiC in Iron or Aluminum). precipitate Large shear stress needed to move dislocation toward precipitate and to move dislocation toward precipitate and to move dislocation toward precipitates act as "pinning" sites with spacing S. Result: $\sigma_y \sim \frac{1}{S}$ Chapter 7 - 19

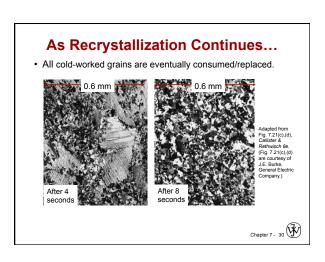


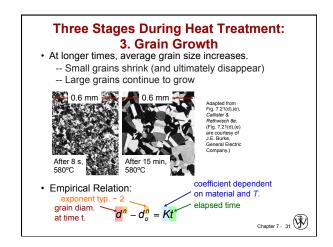

During Cold Working Dislocation density = \[\frac{\text{total dislocation length}}{\text{unit volume}} \] - Carefully grown single crystals \[\times \text{ca. } 10^3 \text{mm}^2 \] - Deforming sample increases density \[\times 10^9-10^10 \text{mm}^2 \] - Heat treatment reduces density \[\times 10^5-10^6 \text{ mm}^2 \] • Yield stress increases as ρ_d increases:

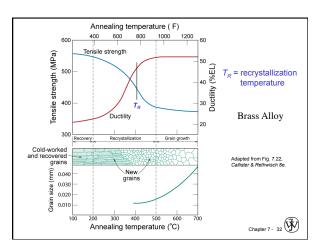

Chapter 7 - 23


Dislocation Density Increases









Recrystallization Temperature

T_R= recrystallization temperature = temperature at which recrystallization just reaches completion in 1 h.

$$0.3T_m < T_R < 0.6T_m$$

For a specific metal/alloy, T_R depends on:

- %CW -- T_R decreases with increasing %CW
- Purity of metal -- T_R decreases with increasing purity

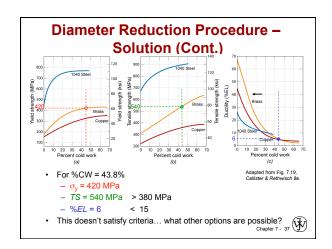
Recrystallization & Melting

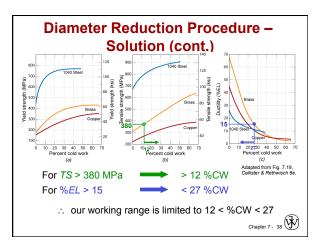
Table 7.2 Recrystallization and Melting Temperatures for Various Metals and Alloys

Metal	Recrystallization Temperature		Melting Temperature	
	$^{\circ}C$	$^{\circ}F$	$^{\circ}C$	°F
Lead	-4	25	327	620
Tin	-4	25	232	450
Zinc	10	50	420	788
Aluminum (99.999 wt%)	80	176	660	1220
Copper (99.999 wt%)	120	250	1085	1985
Brass (60 Cu-40 Zn)	475	887	900	1652
Nickel (99.99 wt%)	370	700	1455	2651
Iron	450	840	1538	2800
Tungsten	1200	2200	3410	6170

Diameter Reduction Procedure - Problem

A cylindrical rod of brass originally 10 mm (0.39 in) in diameter is to be cold worked by drawing. The circular cross section will be maintained during deformation. A cold-worked tensile strength in excess of 380 MPa (55,000 psi) and a ductility of at least 15 %EL are desired. Furthermore, the final diameter must be 7.5 mm (0.30 in). Explain how this may be accomplished.


Diameter Reduction Procedure - Solution


What are the consequences of directly drawing to the final diameter?

%CW =
$$\left(\frac{A_o - A_f}{A_o}\right) \times 100 = \left(1 - \frac{A_f}{A_o}\right) \times 100$$

= $\left(1 - \frac{\pi D_f^2 / 4}{\pi D_o^2 / 4}\right) \times 100 = \left(1 - \left(\frac{7.5}{10}\right)^2\right) \times 100 = 43.8\%$

Diameter Reduction Procedure -Solution (cont.) Cold work, then anneal, then cold work again

- For objective we need a cold work of 12 < %CW < 27 - We'll use 20 %CW
- Diameter after first cold work stage (but before 2nd cold work stage) is calculated as follows:

$$\label{eq:cw} \begin{split} \%\text{CW} = & \left(1 - \frac{D_{f2}^2}{D_{02}^2}\right) \times 100 \ \Rightarrow \ 1 - \frac{D_{f2}^2}{D_{02}^2} = \frac{\%\text{CW}}{100} \\ & \frac{D_{f2}}{D_{02}} = \left(1 - \frac{\%\text{CW}}{100}\right)^{0.5} \ \Rightarrow \ D_{02} = \frac{D_{f2}}{\left(1 - \frac{\%\text{CW}}{100}\right)^{0.5}} \end{split}$$
 Intermediate diameter = $D_{f1} = D_{02} = 7.5 \, \text{mm} / \left(1 - \frac{20}{100}\right)^{0.5} = 8.39 \, \text{mm}$

Diameter Reduction Procedure -Summary

Stage 1: Cold work - reduce diameter from 10 mm to 8.39 mm

%CW₁ =
$$\left(1 - \left(\frac{8.39 \text{ mm}}{10 \text{ mm}}\right)^2\right) x 100 = 29.6$$

Stage 2: Heat treat (allow recrystallization)

Stage 3: Cold work – reduce diameter from 8.39 mm to 7.5 mm

%CW₂ =
$$\left(1 - \left(\frac{7.5}{8.49}\right)^2\right) \times 100 = 20$$
 Fig 7.19

 $\sigma_y = 340 \,\mathrm{MPa}$ TS = 400 MPa%*EL* = 24

Therefore, all criteria satisfied

Cold Working vs. Hot Working

- Hot working → deformation above T_R
- Cold working → deformation below T_R

Grain Size Influences Properties

- Metals having small grains relatively strong and tough at low temperatures
- Metals having large grains good creep resistance at relatively high temperatures

Chapter 7 -

Summary

- Dislocations are observed primarily in metals
 and alloys
- Strength is increased by making dislocation motion difficult.
- Strength of metals may be increased by:
 - -- decreasing grain size
 - -- solid solution strengthening
- -- precipitate hardening
- -- cold working
- A cold-worked metal that is heat treated may experience recovery, recrystallization, and grain growth – its properties will be altered.

ASSIGNMENT/DUE DATE

Reading: Chapters 7 & 8/2-28-12

Problems: 7.5, 7.22, 7.27, 7.D7/3-1-12

Chapter 7 - 44