## Pop Quiz

Ordinary Differential Equations

UCR Math-046-E01, Summer 2018

1. Solve the following differential equation for $x>0$ and with the initial condition that $y(\mathrm{e})=\mathrm{e}^{\mathrm{e}+2}$.

$$
x y^{\prime}=y \ln \left(\frac{y}{x}\right)
$$

Notice that this differential equation is homogeneous. So let's use the substitution $v=y / x$ where

$$
y \mapsto x v \quad y^{\prime} \mapsto x v^{\prime}+v,
$$

and our differential equation becomes $x\left(x v^{\prime}+v\right)=x v \ln (v)$ which should be separable:

$$
\begin{aligned}
x\left(x v^{\prime}+v\right) & =x v \ln (v) \\
x^{2} v^{\prime} & =x v \ln (v)-x v \\
\frac{1}{v(\ln (v)-1)} v^{\prime} & =\frac{1}{x} .
\end{aligned}
$$

Notice that we divided through by $v(\ln (\nu)-1)$, so we have to consider the cases where $v(\ln (\nu)-1)=0$ separately. If $\nu=0$, then $y=0$ which we can check is not a solution to our differential equation. If $\ln (\nu)-1=0$, then $y=\mathrm{e} x$ which is $a$ solution do our differential equation! This solution doesn't satisfy our initial condition condition though, so it's not the one we're looking for. Integrating both sides (do a substitution of $u=\ln (v)-1$ on the left-hand side) we get

$$
\begin{aligned}
\int \frac{1}{v(\ln (v)-1)} \mathrm{d} v & =\int \frac{1}{x} \mathrm{~d} x \\
\ln (u) & =\ln (x)+C \\
\ln (\ln (v)-1) & =\ln (C x) \\
\ln (v)-1 & =C x \\
y & =x \mathrm{e}^{C x+1} .
\end{aligned}
$$

Looking at our initial condition where $y(\mathrm{e})=\mathrm{e}^{\mathrm{e}+2}$, we need to find $C$ such that

$$
\mathrm{e}^{\mathrm{e}+2}=(\mathrm{e}) \mathrm{e}^{C \mathrm{e}+1}
$$

so $C=1$ and our particular solution is $y=x \mathrm{e}^{x+1}$ on the domain $x>0$.
2. Solve the following differential equation:

$$
x^{x} \dot{y}+x^{x} \ln (x) y=1
$$

Heres a link to a more verbose version of the solution, if you're interested.
We first write this as a first-order linear differential equation

$$
\dot{y}+\ln (x) y=x^{-x} .
$$

Since $x>0, x^{x}$ is never zero and we can freely divide through by it. Our integrating factor is $\mathrm{e}^{\int \ln (x) \mathrm{d} x}$. Then after we remember that $\int \ln (x) \mathrm{d} x=x \ln (x)-x$, this integrating factor is

$$
\mathrm{e}^{\int \ln (x) \mathrm{d} x}=\mathrm{e}^{x \ln (x)-x}=\mathrm{e}^{\ln \left(x^{x}\right)} \mathrm{e}^{-x}=x^{x} \mathrm{e}^{-x},
$$

and our differential equation becomes

$$
\begin{aligned}
\dot{y}+\ln (x) y & =x^{-x} \\
\mathrm{e}^{\int \ln (x) \mathrm{d} x} \dot{y}+\mathrm{e}^{\int \ln (x) \mathrm{d} x} \ln (x) y & =\mathrm{e}^{\int \ln (x) \mathrm{d} x} x^{-x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{\int \ln (x) \mathrm{d} x} y\right) & =\mathrm{e}^{\int \ln (x) \mathrm{d} x} x^{-x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{x} \mathrm{e}^{-x} y\right) & =x^{x} \mathrm{e}^{-x} x^{-x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{x} \mathrm{e}^{-x} y\right) & =\mathrm{e}^{-x} .
\end{aligned}
$$

Then by taking the antiderivative of both sides we get

$$
\begin{aligned}
\int \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{x} \mathrm{e}^{-x} y\right) \mathrm{d} x & =\int \mathrm{e}^{-x} \mathrm{~d} x \\
x^{x} \mathrm{e}^{-x} y & =C-\mathrm{e}^{-x} \\
y & =\frac{C-\mathrm{e}^{-x}}{x^{x} \mathrm{e}^{-x}} \\
y & =\frac{C \mathrm{e}^{x}-1}{x^{x}}
\end{aligned}
$$

There's no problem dividing through by $\mathrm{e}^{-x}$ since $\mathrm{e}^{-x}$ is never zero, so this is our general solution.

