
The GNU Basic Calculator (bc): a Quick-
Start Guide for Mathematicians

Contents

Installing on Linux/macOS

Installing on MS Windows

Mike Pierce   ·  Tended 4 January 2024   ·  Hosted at coloradomesa.edu/~mapierce2/bc

The GNU basic calculator (bc) is a free and open source command-line

program that performs arbitrary-precision calculations using the full
capabilities of any computer. This tool is more robust than most OS’s

default calculator app, much faster than a TI calculator, and more

convenient to use than the computational sledgehammers Mathematica
and Jupyter/python. And it’s only “basic” by default; bc is a full

programming language too, extendable with user-written functions.

Professionally speaking, bc is the most elegant tool for mathematicians to
attain the feeling of power that comes with wielding a computer to do

arbitrarily precise computations. Pedagogically speaking, bc provides many

benefits: a means to subvert the pervasiveness of proprietary hardware and
software in classrooms, an easy way to demonstrate the computational

capabilities of a computer to students, and also an accessible avenue for
students to operate a computer as a calculator for themselves.

Installing on Linux/macOS

Installing on MS Windows
Getting Started Using bc

Using Variables

Controlling the Scale of bc’s Computations
Handling Fractional Exponents

Getting the Integer Part of a Number

Extending bc with its Math Library
Computations in Different Bases

Programming: Functions, Arrays, & Limitations

Defining Functions
Printing Output & Reading Input

Control-Flow Syntax & Arithmetic

Array Variables & Loops
Limitations of bc

Exercises & Challenges

Links & References
My File of Auxiliary Functions

Fork this Guide on GitHub

On macOS and most Linux operating systems bc will already be installed. If
not, you can install it using your package manager. For example on a

Debian-based OS like Ubuntu run . Similarly on macOS

you can install bc via the homebrew with .

sudo apt install bc

brew install bc

Running the command in your terminal will display bc’s copyright
banner and start bc interactively. You can suppress this banner with the

option, and load bc’s math library with the option. It’s also helpful to

keep a running collection of functions you write in a file, say functions.bc,

which you load into bc on startup. All of this can be done automatically
when you start bc by setting the environment variable , by

including this line in your shell’s (bash, zsh, …) configuration file:

bc

-q

-l

BC_ENV_ARGS

export BC_ENV_ARGS="-lq /PATH/TO/functions.bc"

Although bc was originally written for unix-based operating systems, it’s

been ported to windows via GnuWin. If you have administrative privileges

on your Windows machine just download the Setup files to install bc. If not
— like if you’re using a classroom computer locked down by your school’s

IT department — you can “portably” install bc. Download the Binaries and

the Dependencies zip archives from the GnuWin page. Extract those zip
archives, and move the files somewhere convenient. Copy the file

readline5.dll from the dependencies archive into the same directory as
bc.exe. You’ll want to keep an auxiliary file of functions you write,

functions.bc, in this same directory.

Screenshot: a directory containing the specified files in Windows

To suppress bc’s copyright banner, and automatically load the math library

and your auxiliary functions when you start bc, create a shortcut to bc.exe
that includes the arguments to bc in the Target of the
shortcut file. You could name the shortcut file something like bcmath and

start it quickly by searching “bcmath” under the Windows Start menu.

-lq functions.bc

Screenshot: how to edit the Target field in Windows

file:///home/pierce/Projects/CMU/WWW/
https://org.coloradomesa.edu/~mapierce2/bc
https://en.wikipedia.org/wiki/Bc_(programming_language)
https://urbigenous.net/library/power.html
https://gen.medium.com/big-calculator-how-texas-instruments-monopolized-math-class-67ee165045dc
https://brew.sh/
http://gnuwin32.sourceforge.net/packages/bc.htm
http://gnuwin32.sourceforge.net/downlinks/bc-bin-zip.php
http://gnuwin32.sourceforge.net/downlinks/bc-dep-zip.php

Getting Started Using bc

Using Variables

Controlling the Scale of bc’s Computations

The bc manual comprehensively describes its usage and features, so this

quick-start guide will be a simple distillation of the key ideas and quirks of
using bc, and a few miscellaneous tips.

Since bc is a command-line calculator, no longer will you waste time

commuting your hand between your mouse and keyboard. Running bc,
simply type in an expression, press to evaluate it, and the result will

be printed on the next line. To stop any currently running computation

(because it’s taking longer than expected) press + . To quit and exit
bc, either type the command or press + .

Enter

Ctrl C

quit Ctrl D

Input preceded by a character is ignored by bc, which is intended to be

used to leave comments in code.

#

Adding Three and Four

3 + 4

7→

You can assign values to variables using , which is helpful for longer

computations.

=

a = 13846000729558555774154292420

b = 63050430913919525940448

hypotenuse_squared = a^2 + b^2

sqrt(hypotenuse_squared)

13846000729702111914156643652.00000000000000000000→

Variables don’t have to be initialized like they do in most programming

languages. GNU bc will just infer the data type of your variable: either a

number or an array of numbers. Variable names must start with a
lowercase letter, but otherwise can be any combination of lowercase

alphanumerical characters and underscores. So using instead of

 above would’ve been just fine. Caution: Capital letters
are reserved for expressing numbers in bases higher than ten.

h2

hypotenuse_squared

The special variable contains the output of the previous command,

allowing you to quickly feed calculation results into new calculations.
Alternatively, a single period character is a shorthand for .

last

. last

a = 13846000729558555774154292420

b = 63050430913919525940448

a^2 + b^2

191711736206911415591997907991571150760667877089711897104→

sqrt(.)

13846000729702111914156643652.00000000000000000000→

The special variable gives you control over the fractional precision of

bc’s output, setting the number of digits to the right of the radix point

(decimal point in base ten) that bc will store during computations. This

simple control over the precision of calculations is the shining feature of bc.

Loading the math library sets to 20, but you can manually change
this to whatever suits your needs:

scale

scale

sqrt(2)

1.41421356237309504880→

scale = 42

sqrt(2)

1.414213562373095048801688724209698078569671→

Conversely, there is a function that returns the number of an

input’s significant digits, and a function that returns the number of
significant digits to the right of the radix point.

length()

scale()

gelfond = 23.1406926

length(gelfond)

9→

scale(gelfond)

7→

Caution: the value of is not the number of decimal places you may
assume to be accurate. Rounding error can accumulate:

scale

scale=2

9*(1/9)

.99→

For a stark example, see how bc could lead us astray from the fact that

. Setting and using as the natural log

function:

lim ​ ​ =x→0 x
ln(x+1) 1 scale=5 l()

x=10^(-1); l(x+1)/x

.95310→

x=10^(-2); l(x+1)/x

.99500→

x=10^(-3); l(x+1)/x

.99000→

x=10^(-4); l(x+1)/x

.90000→

x=10^(-5); l(x+1)/x

0→

All you can say is that the difference between your calculated value and the

“true value” is less than for some , depending on the algorithmic

complexity of your calculation and magnitude of your parameters.

Discovering exactly what must be in a given case requires one dive into

the world of numerical analysis.

10n−scale n

n

https://www.gnu.org/software/bc/manual/html_mono/bc.html
https://en.wikipedia.org/wiki/Decimal_separator#Radix_point
https://en.wikipedia.org/wiki/Numerical_analysis

Handling Fractional Exponents

Getting the Integer Part of a Number

Extending bc with its Math Library

Computations in Different Bases

Programming: Functions,
Arrays, & Limitations

Simply doing arithmetic in bc, the first thing you’ll notice is that bc can’t
immediately handle non-whole numbers as exponents. Trying to calculate

 as a decimal number with the command will throw an

error. Instead you’ll need to use a custom function for this, based on the
functions and from bc’s math library, which do

accept fractional parameters. Here’s a function that evaluates for an

arbitrary base and exponent .

2.713.14 2.71^3.14

e(x) = ex l(x) = ln(x)
pow bx

b x

define pow (b,x) { return e(x*l(b)) }

Then you can compute as . That’s a good function

to keep in your auxiliary functions.bc file. Details about the math library and
writing functions can be found later in this guide.

2.713.14 pow(2.71, 3.14)

The modus operandi of bc is to work at some fixed scale, so it doesn’t store
the integer part of a number for easy access. You can calculate the integer

part of a number by temporarily changing the scale though.

define int(x) {

 auto s;

 s=scale;

 scale=0;

 x/=1;

 scale=s;

 return x;

}

This is also a helpful function to keep in your auxiliary functions file.

Besides support for basic arithmetic operations like addition,

multiplication, integer exponentiation, etc, the only mathematical function
built into bc is . Loading bc’s math library with the option defines

the following additional functions:

sqrt() -l

, the sine of , for in radians.s(x) x x

, the cosine of , for in radians.c(x) x x

, the arctangent of , arctangent returns radians.a(x) x

, the natural logarithm of .l(x) x

, the exponential function of raising to the value .e(x) e x

, the bessel function of integer order of .j(n,x) n x

Only the trigonometric functions sine, cosine, and arctangent are included

for historical reasons, but really that’s all you need: all other trigonometric
functions can be expressed in terms of these three. Doing this is left to the

reader as an exercise, … or see my implementations at the end of this guide.

Since the trigonometric functions in this library expect angles expressed in

radian measure, it is helpful to have stored as a constant. Define as four

times the arctangent of one, . You could keep this line in your

auxiliary functions.bc file, along with these functions to convert between
degree and radian measure:

π π

pi = 4*a(1)

define radtodeg (x) { return x*(45/a(1)) }

define degtorad (x) { return x*(a(1)/45) }

Another shining feature of GNU bc — one most useful to programmers, but

would be remiss not to mention — is its capability to do computations in

bases 2 through 36. The twenty-six capital letters of the alphabet are used
to represent digits beyond 9 as input; this is why it’s forbidden to use

capital characters in variable names. By default, user input and displayed

output are supposed by bc to be in base-ten (decimal). You can tell bc to
display output in different base by changing the variable , and you

can tell bc to expect user input in a different base by changing the variable

. For example:

obase

ibase

obase = 17

8675309

 06 01 14 13 06 05→

obase = 2

8675309

100001000101111111101101→

obase = 10

ibase = 17

61ED65

8675309→

Caution: If you change the value of before changing the value of

, remember that the value you assign to will be interpreted in

the base you assigned to . Maybe just get in the habit of changing
 first.

ibase

obase obase

ibase

obase

A quick note: this guide is specific to GNU bc — there are other

implementations of bc with tighter standards and more/less features. But
GNU bc is the version you’d most likely encounter in the wild.

The syntax of bc is similar to the syntax of the C programming language,
but much looser. If you have no programming experience you should read

the Statements section of the bc manual for a more thorough treatment.

Otherwise if you have some experience programming in C or in any other
modern language, this section will help you translate that experience over

to bc.

https://unix.stackexchange.com/q/652493/74616
https://en.wikipedia.org/wiki/Positional_notation#Base_of_the_numeral_system
https://unix.stackexchange.com/q/199615/74616
https://unix.stackexchange.com/q/199615/74616
https://www.gnu.org/software/bc/manual/html_mono/bc.html#SEC15
https://www.gnu.org/software/bc/manual/html_mono/bc.html#SEC15

Defining Functions

Printing Output & Reading Input

Control-Flow Syntax & Arithmetic

Array Variables & Loops

The syntax for declaring a function in bc is

define NAME (PARAMETERS) {

 auto AUTO_LIST

 ...

 return OUTPUT

}

where is the name of your function, is the list of inputs to
your function, is a list of local variables you define only for use in

this function, and is the value the function returns. In the body of

the function the curly braces group multiple independent commands
together, and either semicolons or newlines (or both) separate those

independent commands. For example, here’s a function that returns the th

Fibonacci number using the classic recursive definition.

NAME PARAMETERS

AUTO_LIST

OUTPUT

{}

;

n

define fibonacci (n) {

 auto i

 if (n==1 || n==2) {

 return 1

 }

 return fibonacci(n-1) + fibonacci(n-2)

}

Within a function it may be helpful to print text to the screen besides just

the return value, or to read user input while the function is running. For
these needs we have respectively the command and function.

The command takes a comma-separated list of things and prints

them to the terminal, while the command will store a number
entered interactively by a user to the variable . For example:

print read()

print

x = read()

x

define fibonacci_ask () {

 auto r

 print "Which Fibonacci number would you like?\n"

 r = read()

 return fibonacci(r)

}

That character prints a newline to the terminal; otherwise bc would

prompt for input on that same line it printed the question.

\n

All of the control-flow keywords , , , , , , and
 are supported in GNU bc. Instead of the keywords “true” and “false”

bc uses the numbers and respectively. To provide some illustrative

examples of the use of these keywords: suppose you need a quick test to tell
if two integers and such that might be adjacent Fibonacci

numbers:

if else for while continue break

halt

1 0

a b 2 < a < b

if (int(10*(b/a)) == 16) {

 print "a and b may be adjacent Fibonacci numbers\n"

} else {

 print "a and b aren't adjacent Fibonacci numbers\n"

}

Or suppose you want to nicely display the first 42 Fibonacci numbers along

with their index:

for (i=1; i<=42; ++i) {

 print i, " | ", fibonacci(i), "\n"

}

Or suppose you want the smallest power of 2 that has a leading digit of 7:

x = 1

while(1) {

 if (int(x/10^(length(x)-1)) == 7) {

 break

 }

 x*=2

}

print x

With the exception of C’s bitwise operations and two other special cases, bc

shares all of C’s arithmetic, assignment, comparison, and logical operators.
Those two special cases are these:

The caret is an integer exponential operator, not a bitwise operator.

The command does the same thing as .

^

a ^= b a = a^b

The modulus operator behaves the same in bc as in C only when scale

is set to zero. Functionally returns regardless of the

value of . In the language of the remainder theorem, you can think
of this general modulus operator this way: for a fixed scale ,

returns the unique non-negative number less than for which

there exists a number such that is an integer and

 For example, returns since

%

a % b a-(a/b)*b

scale

n a % b

r b × 10−n

q q × 10n a = q × b +
r . scale=3; 8%7 0.006 8 = 1.142 × 7 +
0.006 .

In addition to simple variables, bc supports array variables, iterable

collection of variables indexed by non-negative integers (indexing starts at

zero). The index of an array you’d like to access is indicated by enclosing it
in square brackets after the array’s name. That is, the variable for

some is denoted as in bc.

[] a ​i

i ∈ Z+ a[i]

a[1] = 13846000729558555774154292420

a[2] = 63050430913919525940448

h2 = a[1]^2 + a[2]^2

sqrt(h2)

13846000729702111914156643652.00000000000000000000→ →

Simple variables and array variables of the same name can co-exist with no

conflict: letting in that last example would have been
just fine. Like simple variables, arrays don’t have to be initialized, and the

size of an array never needs to be declared. The maximum size of an array in

bc is set as , a value chosen at compile time. In my current
version of bc, this value is

a = a[1]^2 + a[2]^2

BC_DIM_MAX

2 .24

https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://www.gnu.org/software/bc/manual/html_mono/bc.html#SEC10
https://unix.stackexchange.com/q/704891/74616

Limitation of bc

Exercises & Challenges

Links & References

Arrays are useful for looping over some enumeration of data. For example,

we can write a more efficient function by using a for-loop and
storing previously computed Fibonacci numbers in an array :

fibonacci()

fib

define fibonacci (n) {

 auto i, fib

 fib[1] = fib[2] = 1

 for (i=2; i<=n; ++i) {

 fib[i] = fib[i-1] + fib[i-2]

 }

 return fib[n]

}

There are a couple limitations of bc you should keep in mind when

considering if you’d like to use a more robust programming language.

In bc you cannot pass functions as parameters to other functions. The only

variable types — and so the only entities that may be a function’s

parameters — are simple variables and arrays. This limitation makes for
messy code, where any function that morally should have a function as a

parameter instead has to assume a globally-defined function of a fixed
name already exists. I’ve been using the convention that such a function

must be globally defined and named , and its derivative named .f ff

You cannot explicitly define the contents of an entire array at once. I.e. the
syntax is not accepted, and instead you’d have to use:array = {8, 6, 7}

array[0] = 8; array[1] = 6; array[2] = 7;

Similarly, since bc doesn’t keep track of the size of an array, there is no
command to print the entire contents of an array. Instead you must keep

track of the size of an array yourself and loop over the indices to

individually print the entries. This makes working with data in bc
cumbersome, and doing any sort of statistics impossible.

On a related note, you can’t return an array from a function. Instead you

have to pass your array by reference as a parameter, a feature of GNU bc not
documented in the manual. The syntax is demonstrated in this example:

define fibonacci_next (*array[], n) {

 array[n] = array[n-1] + array[n-2]

 return array[n]

}

fib[42] = 267914296

fib[43] = 433494437

fibonacci_next(fib[], 44)

701408733→

fib[42] = 267914296

fib[44]

701408733→

Additionally there is not built-in support for matrices (arrays-of-arrays).

The best way to learn a new tool is on the job; start using bc instead of

whatever basic calculator you’ve been using, and if you teach be sure to
install it on your classroom computer to have at hand during a lesson. In

case you need some initial inspiration to dive into bc, here are some tasks

you can complete as practice.

I’ve written functions to complete some of these tasks in my own

functions.bc file, which you can find on GitHub, in case you’d like to compare

solutions.

The Quadratic Formula  · 1. Write a function that takes the coefficients of

a quadratic polynomial as input and prints the roots of

that polynomial. Since there are two “outputs” of this function you’ll

likely want to one of the roots and return the other.

ax +2 bx + c

print

Alternatively, using bc version ≥1.07.1 you could print both roots and

have your function return nothing using the keyword:void

define void f (a,b,c) { ... }

For more of a challenge, try to (efficiently) write the function to

compute the roots of a cubic or a quartic polynomial.

Decimal Digit as an Array  · 2. Given a decimal number create an array

and write a loop that will store the first digits to the right of the

decimal point in in the indices in the array.

x

n

x

More generally, write a function that takes a decimal number as input

and for some returns the th digit to the right of the decimal

place in

x

n < scale n

x .

Prime Factorization  · 3. Write a function that prints the prime
factorization of its input.

Newton’s Method  · 4. For a differentiable function = and its derivative

= implement Newton’s method of approximating a root of .

f f

ff f ′ f

Then use this function to compute the Dottie number, the constant
defined to be the single real solution to the equation

accurate to 42 decimal places.

cos(x) = x ,

Numerical Integration  · 5. Write a function that, given a globally defined

function , approximates the value of the definite integral

Can you write this function to accurately compute the value of the

integral up to ?

f

​f(x) dx .

a

∫

b

scale

See the GNU bc manual to learn all of bc’s functionality. If you have a

question and you can’t find the answer in the manual, you can ask general

questions about bc on the Unix & Linux Stack Exchange, or programming-
related questions about bc on Stack Overflow.

https://github.com/mikepierce/GNU-bc-Functions
https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Dottie_number
https://www.gnu.org/software/bc/manual/html_mono/bc.html
https://unix.stackexchange.com/questions/tagged/bc?sort=newest
https://stackoverflow.com/questions/tagged/bc

CONTRIBUTING  · 

My File of Auxiliary Functions

Helpful Constants & Functions

Logarithms & Exponentials

Trigonometry

Combinatorics

Fork this Guide on GitHub

The maintainer of has authored a huge library of bc functions

and written a helpful bc FAQ page. Additionally, Keith Matthews has
written some number theory programs for bc. So if you need a specific

algorithm you don’t want to implement yourself, these are the first places

you should check.

phodd.net

And if you’re ever on Twitter having an argument that could be settled with

a computation, there is a Twitter bot @bc_l that will execute bc code.

In case you’re not excited by the romantic notion of implementing
mathematical functions yourself as you need them, here are two options:

copy any of the “basic” functions below into your own functions.bc auxiliary

file to give you a more usable base to start using bc from, or feel free to
fork/clone my personal working collection of bc functions from GitHub:

github.com/mikepierce/GNU-bc-Functions

pi=4*a(1)

ex=e(1)

define abs(x) { if (x>0) return x; return -x }

define sgn(x) { if (x>0) return 1; return -1 }

Return the integer-part of a number (not the floor)

define int(x) {

 auto s; s=scale; scale=0; x/=1; scale=s; return x;

}

define log(x) { return l(x) }

define exp(x) { return e(x) }

define logb(x,b) { return l(x)/l(b) }

define pow(x,n) { return e(n*l(x)) }

define radtodeg(x) { return x*(45/a(1)) }

define degtorad(x) { return x*(a(1)/45) }

define cos(x) { return c(x) }

define sin(x) { return s(x) }

define tan(x) { return s(x)/c(x) }

define sec(x) { return 1/c(x) }

define csc(x) { return 1/s(x) }

define cot(x) { return c(x)/s(x) }

define arccos(x) {

 if(x == 1) return 0

 if(x == -1) return pi

 return pi/2-a(x/sqrt(1-(x^2)))

}

define arcsin(x) {

 if(x == 1) return pi/2

 if(x == -1) return -pi/2

 return sgn(x)*a(sqrt((1/(1-(x^2)))-1))

}

define arctan(x) { return a(x) }

define arcsec(x) { return arccos(1/x) }

define arccsc(x) { return arcsin(1/x) }

define arccot(x) { return pi/2-a(x) }

Note these functions don’t bother to check that their parameters are

integers.

define factorial(n) {

 if (n<1)

 return 1

 return n*factorial(n-1)

}

nCk, the number of ways to choose k of n objects

define choose(n,k) {

 auto c

 c = factorial(n)/(factorial(n-k)*factorial(k))

 return int(c)

}

nPk, the number of ways to permute k of n objects

define pick(n,k) {

 auto i, r

 r = n-k

 for (i=1; n > r; --n)

 i*=n

 return i

}

In keeping with the ethos of digital gardening, and of the internet being a

living, community-tended library of humanity’s collective knowledge, I

don’t want this page to become a corpse of my sole authorship cluttering
the stacks of our library. What a tragic misuse of the internet that would be.

No, I’d rather simply be the … maintainer? custodian? groundskeeper? … of

this living guide. Please feel free to become a co-author and tend to this
page with me.

The semantic HTML for this page is hosted on GitHub,

licensed as CC BY-NC-SA 4.0. If you’d like to suggest an edit or addition to
my instance of this guide, create an issue on GitHub, fork the repository,

make your changes, and submit a pull request. My only requirement of co-

authors of this instance is that you keep with the spirit of the page as a
quick-start guide written with an audience of mathematicians, instructors,

and students in mind — professional programmers and Unix

administrators are already well-served by the GNU bc manual itself.

http://phodd.net/gnu-bc/
http://phodd.net/gnu-bc/bcfaq.html
http://www.numbertheory.org/gnubc/gnubc.html
https://twitter.com/bc_l
https://github.com/mikepierce/GNU-bc-Functions
https://maggieappleton.com/garden-history
https://web.dev/learn/html/semantic-html
https://github.com/mikepierce/Article-GNU-bc-Guide
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
https://github.com/mikepierce/Article-GNU-bc-Guide/issues

