Green’s, Stokes’, and the Divergence Theorems

Trivium

Given a vector field over either R2\mathbf{R}^2 or R3,\mathbf{R}^3, compute its divergence and its curl.

Compute the value of a line integral over a piecewise-smooth curve in a vector field. If the curve is closed, compute its value either directly or as an integral over its interior via either Green’s Theorem or Stokes’ Theorem.

Compute the value of a surface integral over a piecewise smooth surface in a vector field. If the surface is closed, compute its value either directly or as an integral over its interior via either Green’s Theorem or the Divergence Theorem.

Exercises

  1. TK MORE HERE
  2. For F(x,y,z)=xzi+xyzjy2k\bm{F}(x,y,z) = xz\mathbf{i} + xyz\mathbf{j} -y^2\mathbf{k} compute the curl of F.\bm{F}.
  3. Show that the vector field F\bm{F} defined as F(x,y,z)=xzi+xyzjy2k\bm{F}(x,y,z) = xz\mathbf{i} + xyz\mathbf{j} -y^2\mathbf{k} is not conservative.
  4. Show that the vector field F\bm{F} defined as F(x,y,z)=y2z3i+2xyz3j+3xy2z2k\bm{F}(x,y,z) = y^2 z^3\mathbf{i} + 2xyz^3 \mathbf{j} +3xy^2z^2\mathbf{k} is a conservative vector field, and find an example of a function ff such that F=f.\bm{F} = \nabla f.
  5. For F(x,y,z)=xzi+xyzjy2k\bm{F}(x,y,z) = xz\mathbf{i} + xyz\mathbf{j} -y^2\mathbf{k} compute the divergence of F.\bm{F}.
  6. Show that the vector field F\bm{F} defined as F(x,y,z)=xzi+xyzjy2k\bm{F}(x,y,z) = xz\mathbf{i} + xyz\mathbf{j} -y^2\mathbf{k} cannot be written as the curl of another vector field. I.e. there is no vector field G\bm{G} such that F=curlG.\bm{F} = \operatorname{curl}\bm{G}.

Problems & Challenges

  1. Schey Let i\mathbf{i} and j\mathbf{j} and k\mathbf{k} be the unit basis vectors of the standard rectangular coordinate system on R3,\mathbf{R}^3, and let er\mathbf{e}_r and eθ\mathbf{e}_\theta and ez\mathbf{e}_z be the unit basis vectors of the standard cylindrical coordinate system on R3.\mathbf{R}^3.
    1. Show that i=ercos(θ)eθsin(θ)j=ersin(θ)+eθcos(θ)k=ez.\begin{align*} \mathbf{i} &= \mathbf{e}_r\cos(\theta) - \mathbf{e}_\theta\sin(\theta) \\\mathbf{j} &= \mathbf{e}_r\sin(\theta) + \mathbf{e}_\theta\cos(\theta) \\\mathbf{k} &= \mathbf{e}_z\,. \end{align*}
    2. For a vector field F(r,θ,z)=Per+Qeθ+Rez,\bm{F}(r,\theta,z) = P\mathbf{e}_r + Q\mathbf{e}_\theta + R\mathbf{e}_z, show that divF\operatorname{div}\bm{F} is given by divF=1rr(rP)+1rQθ+1rRz.\operatorname{div}\bm{F} = \frac{1}{r}\frac{\partial}{\partial r}\big(rP\big) + \frac{1}{r}\frac{\partial Q}{\partial \theta} + \frac{1}{r}\frac{\partial R}{\partial z}\,.
    3. Determine an analogous formula for curlF\operatorname{curl}\bm{F} in cylindrical coordinates.
  2. Schey Let i\mathbf{i} and j\mathbf{j} and k\mathbf{k} be the unit basis vectors of the standard rectangular coordinate system on R3,\mathbf{R}^3, and let eρ\mathbf{e}_\rho and eθ\mathbf{e}_\theta and eφ\mathbf{e}_\varphi be the unit basis vectors of the standard spherical coordinate system on R3.\mathbf{R}^3.
    1. Show that i=eρsin(θ)cos(φ)+eθcos(θ)cos(φ)eφsin(φ)j=eρsin(θ)sin(φ)+eθcos(θ)sin(φ)eφcos(φ)k=eρcos(θ)eθsin(θ)\begin{align*} \mathbf{i} &= \mathbf{e}_\rho\sin(\theta)\cos(\varphi) + \mathbf{e}_\theta\cos(\theta)\cos(\varphi) - \mathbf{e}_\varphi\sin(\varphi) \\\mathbf{j} &= \mathbf{e}_\rho\sin(\theta)\sin(\varphi) + \mathbf{e}_\theta\cos(\theta)\sin(\varphi) - \mathbf{e}_\varphi\cos(\varphi) \\\mathbf{k} &= \mathbf{e}_\rho\cos(\theta) - \mathbf{e}_\theta\sin(\theta) \end{align*}
    2. For a vector field F(ρ,θ,φ)=Peρ+Qeθ+Reφ,\bm{F}(\rho,\theta,\varphi) = P\mathbf{e}_\rho + Q\mathbf{e}_\theta + R\mathbf{e}_\varphi, show that divF\operatorname{div}\bm{F} is given by divF=1ρ2ρ(r2P)+1ρsin(θ)θ(sin(θ)Q)+1ρsin(θ)Rφ \operatorname{div}\bm{F} = \frac{1}{\rho^2}\frac{\partial}{\partial \rho}\big(r^2P\big) + \frac{1}{\rho\sin(\theta)}\frac{\partial}{\partial \theta}\big(\sin(\theta)Q\big) + \frac{1}{\rho\sin(\theta)}\frac{\partial R}{\partial \varphi}
    3. Determine an analogous formula for curlF\operatorname{curl}\bm{F} in spherical coordinates.
  3. Schey For an arbitrary vector v\bm{v} and r=x,y,z,\bm{r} = \langle x,y,z\rangle, show that curl(v×r2)=v. \operatorname{curl}\Bigl(\frac{\bm{v}\times\bm{r}}{2}\Bigr) = \bm{v}\,.
  4. Schey Verify Stokes’ Theorem for these surfaces SS and vector fields F.\bm{F}.

    1. The surface SS consisting of the five faces of the unit cube in the first quadrant that don’t lie in the xzxz plane, and F=z2,y2,0.\bm{F} = \langle z^2, -y^2, 0\rangle.
    2. The surface that is the eighth of the unit sphere centered at the origin that lies entirely inside the first quadrant, and F=y,z,x.\bm{F} = \langle y,z,x \rangle.
  5. Stewart Prove the following identity: (FG)=(F)G+(G)F+F×curlG+G×curlF \nabla\bigl(\bm{F}\cdot\bm{G}\bigr) = \bigl(\bm{F}\cdot\nabla\bigr) \bm{G} + \bigl(\bm{G}\cdot\nabla\bigr) \bm{F} + \bm{F} \times \operatorname{curl}\bm{G} + \bm{G} \times \operatorname{curl}\bm{F}
  6. Schey Recalling that div=()\operatorname{div} = (\nabla\cdot) and that grad=()\operatorname{grad} = (\nabla) and that curl=(×)\operatorname{curl} = (\nabla\times) and that 2\nabla^2 is the Laplace operator, verify the following identities concerning arbitrary differentiable scalar functions ff and gg and arbitrary differentiable vector fields F\bm{F} and G.\bm{G}.

    (fg)=fg+gf \nabla(fg) = f\nabla g + g\nabla f
    (fF)=fF+Ff \nabla\cdot \bigl(f\bm{F}\bigr) = f\nabla\cdot\bm{F} + \bm{F}\cdot\nabla f
    (F×G)=G(×F)F(×G) \nabla\cdot\bigl(\bm{F}\times\bm{G}\bigr) = \bm{G} \cdot \bigl(\nabla\times\bm{F}\bigr) - \bm{F} \cdot \bigl(\nabla\times\bm{G}\bigr)
    ×(fF)=f×FF×f \nabla\times \bigl(f\bm{F}\bigr) = f\nabla\times\bm{F} - \bm{F}\times\nabla f
    ×(F×G)=(G)F(F)G+F(G)G(F) \nabla\times\bigl(\bm{F}\times\bm{G}\bigr) = \bigl(\bm{G}\cdot\nabla\bigr)\bm{F} - \bigl(\bm{F}\cdot\nabla\bigr)\bm{G} + \bm{F}\bigl(\nabla\cdot\bm{G}\bigr) - \bm{G}\bigl(\nabla\cdot\bm{F}\bigr)
    ×(×F)=(F)2F \nabla\times\bigl(\nabla\times\bm{F}\bigr) = \nabla\bigl(\nabla\cdot\bm{F}\bigr) - \nabla^2\bm{F}
  7. Stewart Find the positively oriented simple closed curve CC for which the value of the line integral is a maximum. C(y3y)dx(2x3)dy \oint\limits_C \bigl(y^3-y\bigr)\,\mathrm{d}x - \bigl(2x^3\bigr)\,\mathrm{d}y