Green’s, Stokes’, and the Divergence Theorems

Trivium

Given a vector field over either R2\mathbf{R}^2 or R3,\mathbf{R}^3, compute its divergence and its curl.

Compute the value of a line integral over a piecewise-smooth curve in a vector field. If the curve is closed, compute its value either directly or as an integral over its interior via either Green’s Theorem or Stokes’ Theorem.

Compute the value of a surface integral over a piecewise smooth surface in a vector field. If the surface is closed, compute its value either directly or as an integral over its interior via either Green’s Theorem or the Divergence Theorem.

Exercises

  1. Evaluate Cx4dx+xydy,\int_C x^4\,\mathrm{d}x + xy\,\mathrm{d}y, where CC is the triangular curve consisting of the line segments from (0,0)(0,0) to (1,0)(1,0) and from (1,0)(1,0) to (0,1)(0,1) and from (0,1)(0,1) to (0,0).(0,0).
  2. Evaluate (3yesin(x))dx+(7x+y4+1)dy,\oint \Big(3y-\mathrm{e}^{\sin(x)}\Big)\,\mathrm{d}x + \Big(7x+\sqrt{y^4+1}\Big)\,\mathrm{d}y, where CC is the circle x2+y2=9.x^2+y^2=9.
  3. Calculate the area enclosed by the ellipse 1a2x2+1b2y2=1.\frac{1}{a^2}x^2+\frac{1}{b^2}y^2=1.
  4. Evaluate y2dx+3xydy,\oint y^2\,\mathrm{d}x + 3xy\,\mathrm{d}y, where CC is the boundary of the semiannular region RR in the upper half-plane between the circles x2+y2=1x^2+y^2=1 and x2+y2=4.x^2+y^2=4.
  5. For the vector field F\bm{F} defined as
    F(x,y)=yx2+y2i+xx2+y2j\displaystyle \bm{F}(x,y) = \frac{-y}{x^2+y^2}\mathbf{i}+\frac{x}{x^2+y^2}\mathbf{j}
    show that CFdr=2π\int_C \bm{F}\cdot\mathrm{d}\bm{r} = 2\pi for every positively oriented simple closed path that encloses the origin.
  6. For F(x,y,z)=xzi+xyzjy2k\bm{F}(x,y,z) = xz\mathbf{i} + xyz\mathbf{j} -y^2\mathbf{k} compute the curl of F.\bm{F}.
  7. Show that the vector field F\bm{F} defined as F(x,y,z)=xzi+xyzjy2k\bm{F}(x,y,z) = xz\mathbf{i} + xyz\mathbf{j} -y^2\mathbf{k} is not conservative.
  8. Show that the vector field F\bm{F} defined as F(x,y,z)=y2z3i+2xyz3j+3xy2z2k\bm{F}(x,y,z) = y^2 z^3\mathbf{i} + 2xyz^3 \mathbf{j} +3xy^2z^2\mathbf{k} is a conservative vector field, and find an example of a function ff such that F=f.\bm{F} = \nabla f.
  9. For F(x,y,z)=xzi+xyzjy2k\bm{F}(x,y,z) = xz\mathbf{i} + xyz\mathbf{j} -y^2\mathbf{k} compute the divergence of F.\bm{F}.
  10. Show that the vector field F\bm{F} defined as F(x,y,z)=xzi+xyzjy2k\bm{F}(x,y,z) = xz\mathbf{i} + xyz\mathbf{j} -y^2\mathbf{k} cannot be written as the curl of another vector field. I.e. there is no vector field G\bm{G} such that F=curlG.\bm{F} = \operatorname{curl}\bm{G}.
  11. Evaluate CFdr,\int_C \bm{F}\cdot\mathrm{d}\bm{r}, where F(x,y,z)=y2i+xj+z2k\bm{F}(x,y,z) = -y^2\mathbf{i} +x\mathbf{j}+z^2\mathbf{k} and CC is the curve of intersection of the plane y+z=2y+z=2 and the cylinder x2+y2=1.x^2+y^2=1. (Orient CC to be counterclockwise when viewed from above.)
  12. Use Stokes’ Theorem to compute the integral ScurlFdS,\iint_S \operatorname{curl}\bm{F}\cdot\mathrm{d}\bm{S}, where F(x,y,z)=xzi+yzj+xyk\bm{F}(x,y,z) = xz\mathbf{i}+yz\mathbf{j}+xy\mathbf{k} and SS is the part of the sphere x2+y2+z2=4x^2+y^2+z^2=4 that lies inside the cylinder x2+y2=1x^2+y^2=1 and above the xyxy-plane.
  13. Calculate the flux of the vector field F(x,y,z)=zi+yj+xk\bm{F}(x,y,z) = z\mathbf{i}+y\mathbf{j}+x\mathbf{k} across the unit sphere x2+y2+z2=1.x^2+y^2+z^2=1.
  14. Evaluate SFdS,\iint_S \bm{F}\cdot\mathrm{d}\bm{S}, where F(x,y,z)=xyi+(y2+exz2)j+sin(xy)k \bm{F}(x,y,z) = xy\mathbf{i} + \Big(y^2+\mathrm{e}^{xz^2}\Big)\mathbf{j} + \sin(xy)\mathbf{k} and SS is the surface of the region EE bounded by the parabolic cylinder z=1x2z=1-x^2 and the planes z=0z=0 and y=0y=0 and y+z=2.y+z=2.

Problems & Challenges

  1. Schey Let i\mathbf{i} and j\mathbf{j} and k\mathbf{k} be the unit basis vectors of the standard rectangular coordinate system on R3,\mathbf{R}^3, and let er\mathbf{e}_r and eθ\mathbf{e}_\theta and ez\mathbf{e}_z be the unit basis vectors of the standard cylindrical coordinate system on R3.\mathbf{R}^3.
    1. Show that i=ercos(θ)eθsin(θ)j=ersin(θ)+eθcos(θ)k=ez.\begin{align*} \mathbf{i} &= \mathbf{e}_r\cos(\theta) - \mathbf{e}_\theta\sin(\theta) \\\mathbf{j} &= \mathbf{e}_r\sin(\theta) + \mathbf{e}_\theta\cos(\theta) \\\mathbf{k} &= \mathbf{e}_z\,. \end{align*}
    2. For a vector field F(r,θ,z)=Per+Qeθ+Rez,\bm{F}(r,\theta,z) = P\mathbf{e}_r + Q\mathbf{e}_\theta + R\mathbf{e}_z, show that divF\operatorname{div}\bm{F} is given by divF=1rr(rP)+1rQθ+1rRz.\operatorname{div}\bm{F} = \frac{1}{r}\frac{\partial}{\partial r}\big(rP\big) + \frac{1}{r}\frac{\partial Q}{\partial \theta} + \frac{1}{r}\frac{\partial R}{\partial z}\,.
    3. Determine an analogous formula for curlF\operatorname{curl}\bm{F} in cylindrical coordinates.
  2. Schey Let i\mathbf{i} and j\mathbf{j} and k\mathbf{k} be the unit basis vectors of the standard rectangular coordinate system on R3,\mathbf{R}^3, and let eρ\mathbf{e}_\rho and eθ\mathbf{e}_\theta and eφ\mathbf{e}_\varphi be the unit basis vectors of the standard spherical coordinate system on R3.\mathbf{R}^3.
    1. Show that i=eρsin(θ)cos(φ)+eθcos(θ)cos(φ)eφsin(φ)j=eρsin(θ)sin(φ)+eθcos(θ)sin(φ)eφcos(φ)k=eρcos(θ)eθsin(θ)\begin{align*} \mathbf{i} &= \mathbf{e}_\rho\sin(\theta)\cos(\varphi) + \mathbf{e}_\theta\cos(\theta)\cos(\varphi) - \mathbf{e}_\varphi\sin(\varphi) \\\mathbf{j} &= \mathbf{e}_\rho\sin(\theta)\sin(\varphi) + \mathbf{e}_\theta\cos(\theta)\sin(\varphi) - \mathbf{e}_\varphi\cos(\varphi) \\\mathbf{k} &= \mathbf{e}_\rho\cos(\theta) - \mathbf{e}_\theta\sin(\theta) \end{align*}
    2. For a vector field F(ρ,θ,φ)=Peρ+Qeθ+Reφ,\bm{F}(\rho,\theta,\varphi) = P\mathbf{e}_\rho + Q\mathbf{e}_\theta + R\mathbf{e}_\varphi, show that divF\operatorname{div}\bm{F} is given by divF=1ρ2ρ(r2P)+1ρsin(θ)θ(sin(θ)Q)+1ρsin(θ)Rφ \operatorname{div}\bm{F} = \frac{1}{\rho^2}\frac{\partial}{\partial \rho}\big(r^2P\big) + \frac{1}{\rho\sin(\theta)}\frac{\partial}{\partial \theta}\big(\sin(\theta)Q\big) + \frac{1}{\rho\sin(\theta)}\frac{\partial R}{\partial \varphi}
    3. Determine an analogous formula for curlF\operatorname{curl}\bm{F} in spherical coordinates.
  3. Schey For an arbitrary vector v\bm{v} and r=x,y,z,\bm{r} = \langle x,y,z\rangle, show that curl(v×r2)=v. \operatorname{curl}\Bigl(\frac{\bm{v}\times\bm{r}}{2}\Bigr) = \bm{v}\,.
  4. Schey Verify Stokes’ Theorem for these surfaces SS and vector fields F.\bm{F}.

    1. The surface SS consisting of the five faces of the unit cube in the first quadrant that don’t lie in the xzxz plane, and F=z2,y2,0.\bm{F} = \langle z^2, -y^2, 0\rangle.
    2. The surface that is the eighth of the unit sphere centered at the origin that lies entirely inside the first quadrant, and F=y,z,x.\bm{F} = \langle y,z,x \rangle.
  5. Stewart Prove the following identity: (FG)=(F)G+(G)F+F×curlG+G×curlF \nabla\bigl(\bm{F}\cdot\bm{G}\bigr) = \bigl(\bm{F}\cdot\nabla\bigr) \bm{G} + \bigl(\bm{G}\cdot\nabla\bigr) \bm{F} + \bm{F} \times \operatorname{curl}\bm{G} + \bm{G} \times \operatorname{curl}\bm{F}
  6. Schey Recalling that div=()\operatorname{div} = (\nabla\cdot) and that grad=()\operatorname{grad} = (\nabla) and that curl=(×)\operatorname{curl} = (\nabla\times) and that 2\nabla^2 is the Laplace operator, verify the following identities concerning arbitrary differentiable scalar functions ff and gg and arbitrary differentiable vector fields F\bm{F} and G.\bm{G}.

    (fg)=fg+gf \nabla(fg) = f\nabla g + g\nabla f
    (fF)=fF+Ff \nabla\cdot \bigl(f\bm{F}\bigr) = f\nabla\cdot\bm{F} + \bm{F}\cdot\nabla f
    (F×G)=G(×F)F(×G) \nabla\cdot\bigl(\bm{F}\times\bm{G}\bigr) = \bm{G} \cdot \bigl(\nabla\times\bm{F}\bigr) - \bm{F} \cdot \bigl(\nabla\times\bm{G}\bigr)
    ×(fF)=f×FF×f \nabla\times \bigl(f\bm{F}\bigr) = f\nabla\times\bm{F} - \bm{F}\times\nabla f
    ×(F×G)=(G)F(F)G+F(G)G(F) \nabla\times\bigl(\bm{F}\times\bm{G}\bigr) = \bigl(\bm{G}\cdot\nabla\bigr)\bm{F} - \bigl(\bm{F}\cdot\nabla\bigr)\bm{G} + \bm{F}\bigl(\nabla\cdot\bm{G}\bigr) - \bm{G}\bigl(\nabla\cdot\bm{F}\bigr)
    ×(×F)=(F)2F \nabla\times\bigl(\nabla\times\bm{F}\bigr) = \nabla\bigl(\nabla\cdot\bm{F}\bigr) - \nabla^2\bm{F}
  7. Stewart Find the positively oriented simple closed curve CC for which the value of the line integral is a maximum. C(y3y)dx(2x3)dy \oint\limits_C \bigl(y^3-y\bigr)\,\mathrm{d}x - \bigl(2x^3\bigr)\,\mathrm{d}y