-
Stewart
For the unit ball \(S = \big\{(x,y,z) \mid x^2+y^2+z^2 \leq 1 \big\}\) evaluate -
Stewart
Calculate the volume of the solid \(S\) that lies above the cone \(z = \sqrt{x^2+y^2}\) but below the sphere \(x^2+y^2+z^2=z.\) -
Dawkins
Evaluate \(\iiint_S 16z\,\mathrm{d}V\) where \(S\) is the upper half of the sphere of radius one centered at the origin. -
Dawkins
Evaluate the integral