Tangent Planes & Taylor Approximations

TK For a multi-variable function \(f \colon \mathbf{R}^2 \to \mathbf{R}\) the equation for the plane tangent to the graph \(z = f(x,y)\) at the point \(\bigl(x_0, y_0, z_0\bigr)\) where \(z_0 = f(x_0, y_0)\) is \[ z = f(x_0, y_0) + f_x(x_0, y_0)\bigl(x - x_0\bigr) + f_y(x_0, y_0)\bigl(y - y_0\bigr)\,. \] Writing this equation in the usual template for a plane, \[ f_x(x_0, y_0)\bigl(x-x_0\bigr) + f_y(x_0, y_0)\bigl(y-y_0\bigr) - \bigl(z-z_0\bigr) = 0\,, \] implies that the vector \(\bigl\langle f_x(x_0, y_0), f_y(x_0, y_0), -1 \bigr\rangle\) will be normal to the plane, and thus the graph, at that point. Beyond tangent planes (linear approximations), Taylor’s Theorem holds for multivariable functions, giving us a series representation of any smooth function \(f\colon \mathbf{R}^2\to\mathbf{R},\) per some “anchor” point \((x_0,y_0,z_0)\) on the function’s graph: \[ f(x,y) = \sum_{n=0}^{\infty}\sum_{k=0}^{n}\frac{f_{x_{k} y_{n-k}}(x_0,y_0)}{k!(n-k)!}\bigl(x-x_0\bigr)^k\bigl(x-y_0\bigr)^{n-k} \] Explicitly, the second-order Taylor approximation to \(f\) at \((x_0,y_0)\) gives the paraboloid \[ z = f(x_0, y_0) + f_x(x_0, y_0)\bigl(x - x_0\bigr) + f_y(x_0, y_0)\bigl(y - y_0\bigr) + \frac{f_{xx}(x_0, y_0)}{2}\bigl(x - x_0\bigr)^2 + f_{xy}(x_0, y_0)\bigl(x - x_0\bigr)\bigl(y - y_0\bigr) + \frac{f_{yy}(x_0, y_0)}{2}\bigl(y - y_0\bigr)^2 \,. \]