Stokes’s Theorem and the Divergence Theorem

TK Stokes’ Theorem (or the Kelvin-Stokes Theorem, or the Curl Theorem) — for an oriented piecewise-smooth surface \(S\) whose boundary \(C = \partial S\) is a simple, closed, piecewise-smooth, positively-oriented curve, and a vector field \(\bm{F}\) whose components have continuous partial derivatives on a open expanse containing \(S,\) \[ {\color{silver} \int_a^b\int_c^d \operatorname{curl}\bm{F}\bigl(\bm{r}(s,t)\bigr)\cdot\bigl(\bm{r}_s\times\bm{r}_t\bigr) \,\mathrm{d}s\,\mathrm{d}t =} \oiint_S \operatorname{curl}\bm{F} \cdot \mathbf{N} \,\mathrm{d}S %= \oiint_S \operatorname{curl}\bm{F} \cdot \mathrm{d}\bm{S} = \oint_{C} \bm{F}\cdot\mathrm{d}\bm{r} {\color{silver} \;\;= \int_a^b \bm{F}\bigl(\bm{r}(t)\bigr)\cdot\bm{r}'(t) \,\mathrm{d}t} %= \oint_{C} \bm{F}\cdot\bm{T} \,\mathrm{d}s \,. \] I.e. the surface integral that computes the total circulation, the sum of the curl, on a surface is equal to the line integral that computes the circulation along its boundary.

TK The Divergence Theorem (or Gauss’s Theorem, or Ostrogradsky’s Theorem) — for a simple expanse \(E\) whose boundary \(S = \partial E\) is a simple, closed, piecewise-smooth, and positively-oriented (outward) surface, and for a vector field \(\bm{F}\) whose components have continuous partial derivatives on a open expanse containing \(E,\) \[ %{\color{silver} \int\limits_a^b\int\limits_{h_1(x)}^{h_2(x)}\int\limits_{g_1(x,y)}^{g_2(x,y)} \operatorname{div}F(x,y,z) \,\mathrm{d}z\,\mathrm{d}y\,\mathrm{d}x = } \iiint_E \operatorname{div}\bm{F} \,\mathrm{d}V = \oiint_{S} \bm{F}\cdot\mathrm{d}\bm{S} {= \color{silver} \int_a^b\int_c^d \bm{F}\bigl(\bm{r}(s,t)\bigr)\cdot\bigl(\bm{r}_s\times\bm{r}_t\bigr) \,\mathrm{d}s\,\mathrm{d}t} \,. \] I.e. the integral that computes the sum total of the divergence within an expanse is equal to the surface integral across its boundary, the flux.