Definitions
\[ \newcommand{\ex}{\mathrm{e}} \sinh(x) = \frac{\ex^x-\ex^{-x}}{2} \qquad \mathrm{csch}(x) = \frac{1}{\sinh(x)} \] \[ \newcommand{\ex}{\mathrm{e}} \cosh(x) = \frac{\ex^x+\ex^{-x}}{2} \qquad \mathrm{sech}(x) = \frac{1}{\cosh(x)} \] \[ \tanh(x) = \frac{\sinh(x)}{\cosh(x)} \qquad \coth(x) = \frac{1}{\tanh(x)} \]
Basic Identities
\[ \sinh(-x) = -\sinh(x) \qquad \cosh(-x) = \cosh(x) \] \[ \sinh^2(x) - \cosh^2(x) = 1 \qquad 1 - \tanh^2(x) = \mathrm{sech}^2(x) \] \[ \sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y) \] \[ \cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y) \]
Derivative Formulas
\[ \frac{\mathrm{d}}{\mathrm{d}x} \sinh(x) = \cosh(x) \qquad \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{csch}(x) = -\mathrm{csch}(x)\coth(x) \] \[ \frac{\mathrm{d}}{\mathrm{d}x} \cosh(x) = \sinh(x) \qquad \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{sech}(x) = -\mathrm{sech}(x)\tanh(x) \] \[ \frac{\mathrm{d}}{\mathrm{d}x} \tanh(x) = \mathrm{sech}^2(x) \qquad \frac{\mathrm{d}}{\mathrm{d}x} \coth(x) = -\mathrm{csch}^2(x) \]
Logarithmic Formulas for Inverse Hyperbolic Functions
\[ \mathrm{arsinh}(x) = \ln\left(x+\sqrt{x^2+1}\right) \] \[ \mathrm{arcosh}(x) = \ln\left(x+\sqrt{x^2-1}\right),\, x\geq 1 \] \[ \mathrm{artanh}(x) = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right),\, |x| \lt 1 \]
Derivatives of Inverse Hyperbolic Functions
\[ \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{arsinh}(x) = \frac{1}{\sqrt{1+x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{arcsch}(x) = -\frac{1}{|x|\sqrt{x^2+1}} \] \[ \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{arcosh}(x) = \frac{1}{\sqrt{x^2-1}} \qquad \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{arsech}(x) = -\frac{1}{x\sqrt{1-x^2}} \] \[ \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{artanh}(x) = \frac{1}{1-x^2},\, |x| \lt 1 \qquad \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{arcoth}(x) = \frac{1}{1-x^2},\, |x| \gt 1 \]
- Verify that this function \(f\) is a solution to that differential equation. Note that \(C\) is just some vertical offset. \[ y = f(x) = \frac{T}{\rho g}\cosh\left(\frac{\rho g x}{T}\right) + C \]
- Investigate the units of every parameter involved in the formula \(f(x)\). In particular verify that the argument of \(\cosh\) and the output of \(\cosh\) are both scalar, unit-less quantities.
-
Desmos
Suppose you have two utility poles embedded in the ground 100 meters apart with a power line of linear density 2kg/m running between them fastened 10 meters up each pole. Use \(g = 9.80\)m/s² for gravity in Grand Junction due to elevation.- If the power line is rated for a maximum tension of 20,000N. How much will the line sag at its lowest point if we hang it such that it experiences this tension at its lowest point?
- If we hang the power line at this maximum tension, at what angle \(\theta\) will the line be descending where it initially hangs from the pole?
-
We don’t want to push the line near its limits, maxing out its tension, though. We only need to allow for a few meters of clearance under the wire at the lowest point. Hanging the line such that it allows for 5 meters of clearance, compute the force of tension the cable is experiencing at its lowest point as precisely as possible.
g = 9.8 define f(x) { return ( x*cosh(100*g/x)-x-10*g ) } define ff(x) { return ( -100*g*sinh(100*g/x)/x + cosh(100*g/x) -1 ) }