Inverse Trig Functions

  1. How do you write each of the following as an algebraic function of xx? sin(arctan(x))sec(arcsin(x)) \sin\left(\arctan(x)\right) \qquad \qquad \sec\left(\arcsin(x)\right)
  2. Demonstrate how to calculate these algebraic formulas for the derivatives of inverse trigonometric functions.

    ddxarcsin(x)=11x2ddxarccsc(x)=1xx21 \frac{\mathrm{d}}{\mathrm{d}x} \arcsin(x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{arccsc}(x) = -\frac{1}{x\sqrt{x^2-1}} ddxarccos(x)=11x2ddxarcsec(x)=1xx21 \frac{\mathrm{d}}{\mathrm{d}x} \arccos(x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{arcsec}(x) = \frac{1}{x\sqrt{x^2-1}} ddxarctan(x)=11+x2ddxarccot(x)=11+x2 \frac{\mathrm{d}}{\mathrm{d}x} \arctan(x) = \frac{1}{1+x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{arccot}(x) = -\frac{1}{1+x^2}