Demonstrate how to calculate these algebraic formulas for the derivatives of inverse trigonometric functions.
ddxarcsin(x)=11−x2ddxarccsc(x)=−1xx2−1 \frac{\mathrm{d}}{\mathrm{d}x} \arcsin(x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{arccsc}(x) = -\frac{1}{x\sqrt{x^2-1}} dxdarcsin(x)=1−x21dxdarccsc(x)=−xx2−11 ddxarccos(x)=−11−x2ddxarcsec(x)=1xx2−1 \frac{\mathrm{d}}{\mathrm{d}x} \arccos(x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{arcsec}(x) = \frac{1}{x\sqrt{x^2-1}} dxdarccos(x)=−1−x21dxdarcsec(x)=xx2−11 ddxarctan(x)=11+x2ddxarccot(x)=−11+x2 \frac{\mathrm{d}}{\mathrm{d}x} \arctan(x) = \frac{1}{1+x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{arccot}(x) = -\frac{1}{1+x^2} dxdarctan(x)=1+x21dxdarccot(x)=−1+x21