Once the exam begins, tear this page away to use for scratch calculations.



# Math135 Engineering Calculus I <br> Second Midterm Exam 

Colorado Mesa University 2024 Spring

NAME:

1. What's a formula for this derivative?

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(13 x+x^{13}+\sqrt{13}\right)
$$

2. What's a formula for this derivative?

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sqrt{x^{13}}+\sqrt[13]{x}+\frac{1}{13}\right)
$$

3. What's a formula for this derivative?

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(13 \tan (\sqrt{x}))
$$

4. What's a formula for this derivative?

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sec (13 x)}{x}\right)
$$


5. Write down the mathematical definition of the derivative $f^{\prime}$ of a continuous function $f$.
6. Figure out an equation of the line tangent to the curve $y=x+x \cos (x)$ at the point where $x=\frac{\pi}{6}$. Write the equation in the form $y=m x+b$ with parameters $m$ and $b$ accurate to within $\pm 0.001$.
7. On the axes below, sketch the graph of a function $f$ that has the following properties:

- The function $f$ is continuous everywhere except at $x=2$
- The function $f$ is differentiable everywhere except at $x=2$ and $x=-1$.
- $f(0)=0$ and $f(4)=2$.
- $f^{\prime}(-4)=0$ and $f^{\prime}(4)=4$ and $f^{\prime \prime}(4)=0$.
- $f^{\prime}(x)=-1$ for all $x$ in the interval $(-1,2)$.
- $f^{\prime \prime}(x)>0$ for all $x$ in the intervals $(-\infty,-1)$ and $(4, \infty)$.
- $f^{\prime \prime}(x)<0$ for all $x$ in the interval $(2,4)$.

Protip: draft the graph on scratch paper first.

8. It's midnight. A 5'-tall man walks on a sidewalk, under and past a streetlamp mounted at the top of a $24^{\prime}$-tall pole. If the man is walking at a pace of $6 \mathrm{ft} / \mathrm{s}$ away from the pole, how fast is the tip of his shadow moving along the sidewalk the moment he is $36^{\prime}$ from the pole?

9. Consider a rectangle that has a perimeter of 16 inches. Imagine revolving that rectangle in threedimensional space about one of its edge, tracing out a circular cylinder. What must the dimensions of the rectangle be that results in a cylinder with maximum volume?


