\(\displaystyle \int \bigl(k f\bigr) = k \int f \text{ for } k \in \mathbf{R}\)\(\displaystyle \int \bigl(f \pm g\bigr) = \int f \pm \int g \)\(\displaystyle \int \Bigl((f' \circ g)(g') \Bigr) = (f \circ g) + C \) \(\displaystyle \int f g \mathbf{\neq} \int f + \int g \)\(\displaystyle \int \frac{f}{g} \mathbf{\neq} \frac{\int f}{\int g} \)\(\displaystyle \int x^n \,\mathrm{d}x = \frac{1}{n+1}x^{n+1} + C \text{ for } n\neq -1\) \(\displaystyle \int \cos(x) \,\mathrm{d}x = \sin(x) + C \)\(\displaystyle \int \sec(x)\tan(x) \,\mathrm{d}x = \sec(x) + C \)\(\displaystyle \int \sec^2(x) \,\mathrm{d}x = \tan(x) + C\) \(\displaystyle \int \sin(x) \,\mathrm{d}x = -\cos(x) + C \)\(\displaystyle \int \csc(x)\cot(x) \,\mathrm{d}x = -\csc(x) + C \)\(\displaystyle \int \csc^2(x) \,\mathrm{d}x = -\cot(x) + C\)
For each of these indefinite integrals, write down a formula
for the family of all antiderivatives of its integrand.
Use software capable of symbolic integration to check your formulas.