- What is the 307th derivative of \(\sin(x)\)?
-
Write down a formula for the derivative of each of the following functions. Note that you can check your derivative using any software capable of symbolic differentiation, e.g. WolframAlpha.
\(\displaystyle a(x) = \sin(2x) \)\(\displaystyle b(x) = \cos(x-17) \)\(\displaystyle c(x) = \sin(x+2)+x+2 \)\(\displaystyle d(x) = 3x^2\sin(x) \)\(\displaystyle \varepsilon(x) = \tfrac{1}{x^2}\cos(x) \)\(\displaystyle f(x) = \cos(x)\sqrt{x} \)\(\displaystyle g(x) = \sin(x)\cos(x)\)\(\displaystyle h(x) = \cos\bigl(x^7\bigr) \)\(\displaystyle i(x) = \bigl(\cos(x)\bigr)^7 \)\(\displaystyle j(x) = x^4\sin(2x)\)\(\displaystyle k(x) = x^4+\cos(x)\)\(\displaystyle l(x) = \cos\bigl(\tfrac{2}{x}\bigr)\)\(\displaystyle m(x) = \cos\bigl(\ln(x)\bigr)\)\(\displaystyle n(x) = \ln\bigl(\cos(x)\bigr)\)\(\displaystyle o(x) = \ln(x)\cos(x)\)\(\displaystyle p(x) = \mathrm{e}^{\sin(x)}\)\(\displaystyle q(x) = \mathrm{e}^x\sin\bigl(x^\mathrm{e}\bigr)\)\(\displaystyle r(x) = \cos\bigl(\cos(x)\bigr)\)\(\displaystyle s(x) = \cos\Bigl(\cos\bigl(\cos(x)\bigr)\Bigr)\)\(\displaystyle t(x) = \sin(x)\sin\bigl(\cos(x)\bigr)\)\(\displaystyle u(x) = \mathrm{e}^{\cos(7x)}\)\(\displaystyle v(x) = \mathrm{e}\bigl(\cos(\mathrm{e}x)\bigr)^\mathrm{e}\)\(\displaystyle w(x) = \sqrt{\cos(3x)}\)\(\displaystyle \chi(x) = \frac{1}{\cos(x)}\)\(\displaystyle y(x) = \frac{\sin(x)}{\cos(x)}\)\(\displaystyle z(x) = \frac{\mathrm{e}^x}{\sin(3x)}\)