Rules of Differentiation

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\biggl(kf(x) \biggr) = k \frac{\mathrm{d}}{\mathrm{d}x}f(x) \)
\(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\biggl(f(x) \pm g(x) \biggr) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x) \)
\(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\biggl( x^n \biggr) = n x^{n-1} \)

\(\displaystyle % \frac{\mathrm{d}}{\mathrm{d}x}\biggl( f(x) g(x) \biggr) % = \frac{\mathrm{d}}{\mathrm{d}x}\biggl( f(x)\biggr) g(x) % + f(x) \frac{\mathrm{d}}{\mathrm{d}x}\biggl( g(x) \biggr) % \qquad\text{ or }\qquad \Bigl( {\color{DarkGreen} f}{\color{Maroon} g} \Bigr)' = {\color{DarkGreen}f}'{\color{Maroon} g} + {\color{DarkGreen} f}{\color{Maroon} g}' \)
\(\displaystyle % \frac{\mathrm{d}}{\mathrm{d}x}\biggl( \tfrac{f(x)}{g(x)} \biggr) % = \frac{\frac{\mathrm{d}}{\mathrm{d}x}\Bigl( f(x)\Bigr) g(x) % - f(x) \frac{\mathrm{d}}{\mathrm{d}x}\Bigl( g(x) \Bigr)}{\bigl(g(x)\bigr)^2} % \qquad\text{ or }\qquad \Bigl( \tfrac{{\color{DarkGreen} f}}{{\color{Maroon} g}} \Bigr)' = \frac{{\color{DarkGreen}f}'{\color{Maroon} g} - {\color{DarkGreen} f}{\color{Maroon} g}'}{{\color{Maroon} g}^2} \)
\(\displaystyle %\frac{\mathrm{d}}{\mathrm{d}x}\biggl( f\bigl({\color{DarkGreen} g(x)}\bigr) \biggr) %= \frac{\mathrm{d}}{\mathrm{d}x}f\bigl( {\color{DarkGreen} g(x)} \bigr) %{\color{DarkGreen} \frac{\mathrm{d}}{\mathrm{d}x}g(x) } %\qquad\text{ or }\qquad %\Bigl(f\bigl({\color{DarkGreen} g(x)}\bigr)\Bigr)' = f'\bigl({\color{DarkGreen} g(x) }\bigr){\color{DarkGreen} g'(x) } %\qquad\text{ or }\qquad \bigl(f \circ {\color{DarkGreen} g}\bigr)' = (f' \circ {\color{DarkGreen} g })({\color{DarkGreen} g' }) \)

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\biggl( \mathrm{e}^x \biggr) = \mathrm{e}^x \)
\(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\biggl( b^x \biggr) = \ln(b)b^x \)
\(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\biggl( \ln(x) \biggr) = \frac{1}{x} \)
\(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\biggl( \log_b(x) \biggr) = \frac{1}{\ln(b)x} \)

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\biggl( \sin(x) \biggr) = \cos(x) \)
\(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\biggl( \cos(x) \biggr) = -\sin(x) \)