For any of the following functions, manually sketch its graph,
taking stock of its period, amplitude, and phase shift
and considering how to scale the coordinate axes to accommodate the graph.
Once you’re confident in your sketch,
plot the graph of the function using a graphing calculator or computer
and compare it with your sketch.
a(x)=−cos(x)
b(x)=sin(−x)
c(x)=−sin(x)
d(x)=5+sin(x)
e(x)=3−cos(x)
f(x)=cos(2x)
g(x)=21cos(x)
h(x)=21cos(3x)
i(x)=21cos(x−π)
j(x)=cos(21x)
k(x)=2−3cos(x)
l(x)=2−cos(21x)
m(x)=2−3cos(21x)
n(x)=1+sin(πx)
o(x)=1+sin(πx)
p(x)=1+sin(π(x−3))
q(x)=1+sin(π1x)
r(x)=cos(x+31)+32
s(x)=cos(3(x−1))
t(x)=cos(3(x−π))
u(x)=cos(6x−3π)
v(x)=cos(4x−π)
w(x)=cos(3x+π)
y(x)=cos(x+3π)
z(x)=cos(3x+2π)
α(x)=tan(−x)
β(x)=sec(x)
γ(x)=tan(5x)
δ(x)=5−tan(x)
ε(x)=21sec(πx)
ζ(x)=21sec(x−π)
η(x)=sec(21(x−π))
θ(x)=sec(21(x−6π))
ι(x)=sec(21x−6π)
κ(x)=csc(21x−6π)
λ(x)=−csc(2x−2π)
μ(x)=3csc(πx−2π)
ν(x)=3tan(πx−2π)
ξ(x)=3−tan(πx−2π)
ο(x)=3−3tan(π(x−1))
π(x)=sec(π(x−1))
ρ(x)=csc(π(x−1))
σ(x)=sec(−π)
τ(x)=∣∣sec(x)∣∣
υ(x)=∣∣sin(x)∣∣
φ(x)=∣∣3sin(x−1)∣∣
χ(x)=∣∣sin(x)+21∣∣
ψ(x)=∣∣tan(x)∣∣
ω(x)=∣∣1−tan(x)∣∣
For each of the following curves below
write down a formula for the function
whose graph is that curve.
Once you’re confident you’ve written down the correct formula,
use a graphing calculator or computer
to plot the graph of your function to compare.