Logarithmic Functions

  1. Write down an explanation of how you can estimate the value of log10(31415926)\log_{10}(31415926) without appealing to technology.
  2. Without appealing to technology, figure out the exact value of the following logarithms. (Hint: they’re all whole numbers.)
    log5(625)\log_5(625)
    log2(1024)\log_2(1024)
    log11(14641)\log_{11}(14641)
    ln(e7)\ln\bigl(\mathrm{e}^7\bigr)
  3. Using a calculator, write down a decimal approximation of each of the following numbers rounded to two decimal places.
    log10(31415926)\log_{10}(31415926)
    ln(100)\ln(100)
    log5(43)\log_5(43)
  4. Find the value(s) of xx that satisfies each of these equations.
    2x=40962^x = 4096
    3x=60003^x = 6000
    3x2x=12343^x2^x = 1234
    ex=42\mathrm{e}^x = 42
  5. If log7(x)=5,\log_7(x) = 5, what must the value of each of the following expressions be? (Hint: this is an exercise of your effective use of the “rules of logarithms”.)
    log7(x37)\displaystyle \log_7\biggl(\frac{x^3}{7}\biggr)
    log7(49x2)\displaystyle \log_7\bigl(49x^2\bigr)
    log7(x343)\displaystyle \log_7\biggl(\frac{\sqrt{x}}{343}\biggr)
  6. If log5(x)=3\log_5(x) = 3 and log5(y)=10,\log_5(y) = 10, what must the value of each of the following expressions be?
    log5(625xy2)\displaystyle \log_5\biggl(\frac{625x}{y^2}\biggr)
    log5(x5y)\displaystyle \log_5\Bigl(x\sqrt{5y}\Bigr)
    ln(x3y)ln(25)\displaystyle \frac{\ln\bigl(x^3y\bigr)}{\ln(25)}
  7. Rewrite each of the following expressions as a single logarithm. I.e. “simplify” these into a form that looks like logb(stuff)\log_b(\text{stuff}) for some stuff.\text{stuff}.
    log7(x)+4log7(y)\displaystyle \log_7(x) + 4\log_7(y)
    ln(5x)3ln(z)\displaystyle \ln(5x) - 3\ln(z)
    12log5(4x)+2log5(x+1)\displaystyle \frac{1}{2}\log_5(4x) + 2\log_5(x+1)
  8. Rewrite each of the following expressions as a single logarithm.
    3log2(3x)+5log2(y)\displaystyle -3\log_2(3x) + \sqrt{5}\log_2(y)
    3ln(w)13ln(y)ln(3)\displaystyle \frac{3\ln(w) - \frac{1}{3}\ln(y)}{\ln(3)}
    23log9(x)2log9(y1)+2log9(9)\displaystyle \frac{2}{3}\log_9(x) - 2\log_9(y-1) + 2\log_9(9)
  9. In May 2008 an earthquake of magnitude 6.8 struck Honshu, Japan, causing some injuries and building damage. In March 2011 a magnitude 9.0 earthquake stuck Honshu, killing thousands of people. How much more powerful was this second earthquake?