Midterm Exam Two

Math 113-007/8 College Algebra Colorado Mesa University Spring 2023

Name: \qquad

1. What are the coordinates of the vertex of the parabola given by the graph of $f(x)=-2 x^{2}+x+3$? Does this vertex represent a minimum or maximum of f ?
2. What are the values of x where the graph of $g(x)=x^{2}+4 x-77$ crosses the x-axis?
3. Approximately what must r be if $1=0.369(1+r)^{3.14}$? Express your answer as a decimal.
4. Find all the values of x that satisfy the equation $|x-3|=3 x$.

5. The function h defined by the formula $h(x)=\frac{1}{7}(x-3)^{5}$ is a one-to-one function. Write down a formula for its inverse function h^{-1}.
6. In 2024, the city of Grand Junction is planning on updating the way it charges residents for city water use ${ }^{1}$. They're reducing the number of rate tiers to three and introducing a fee for anyone who uses more than 20,000 gallons per month by charging

$$
C(w)= \begin{cases}21.86 & \text { if } 0<w \leq 3 \\ 0.7 w^{1.5546}+18 & \text { if } 3<w \leq 20 \\ 5.74(w-20)+102.74 & \text { if } 20<w\end{cases}
$$ $C(w)$ dollars each month per w thousand gallons of water used according to this piecewise function.

x
(a) Graph $y=C(w)$, and label the points $(3, C(3))$ and (20,C(20)) with their coordinates.
(b) How much will GJ charge a resident that used 2,100 gallons of water in a month? What about a resident that used 7,200 gallons?
(c) Analyzing the function $C(w)$, figure out how much the fee for a resident using more than 20,000 gallons a month must be.

[^0]7. A projection for the population of earth (in billions) according to the $U N^{2}$ is given in this table.

year	2000	2020	2040	2060
population (in billions)	6.15	7.84	9.19	10.07

(a) Using your TI graphing calculator, perform quadratic regression to find a formula $P(x)$ for the quadratic function that best models these projections as a function of x years after 2000. Write the formula for your model below ${ }^{3}$. Feel free to round the coefficients.
(b) According to your model, what is the current world population?
(c) According to your model, what year will the earth's population hit a maximum, and what will this maximum population be?
8. Was there anything you were expecting to be on this exam, but was not?

[^1]
[^0]: ${ }^{1}$ Not true, but based on a true story: gjcity.org/314/Utility-Rates.

[^1]: ${ }^{2}$ From population.un.org/dataportal
 ${ }^{3}$ Recall that on your calculator, the notation $3.7 \mathrm{E}-2$ is scientific notation and means 3.7×10^{-2}.

