Tartaglia Trounces Fiore

AI image of Tartgalia winning over Fiore

Letting \(D = 2b^3-9abc+27a^2d\) and \(\Omega_{+} = \sqrt[3]{D+\sqrt{D^2+4\bigl(b^2-3ac\bigr)^3}}\) and \(\Omega_{-} = \sqrt[3]{D-\sqrt{D^2-4\bigl(b^2-3ac\bigr)^3}}\)

\[ x = \frac{b-\sqrt[3]{\Omega+\sqrt{\Omega^2-4\bigl(b^2-3ac\bigr)^3}}-\sqrt[3]{\Omega-\sqrt{\Omega^2-4\bigl(b^2-3ac\bigr)^3}}}{3\sqrt[3]{2}a} \]

\[ x = \frac{b-\sqrt[3]{\Omega+\sqrt{\Omega^2-4\bigl(b^2-3ac\bigr)^3}} -\sqrt[3]{\Omega-\sqrt{\Omega^2-4\bigl(b^2-3ac\bigr)^3}}}{3\sqrt[3]{2}a} \]

The cubic equations, degree-3 analogues of the quadratic equation
The Cubic Equations