Magnetic Fields and Forces

Charles D. Winters /Cengage Learning

Typical Field Strengths

- * The units of the magnetic field are Teslas
- * Typical field strengths
 - * Earth's magnetic field 5x10⁻⁵T
 - * Sun's magnetic field 2x10⁻⁴T
 - * Bar magnet 5x10⁻³T
 - * World's strongest magnet 45T
 - * Neutron Star magnetic field 10^8 T to 10^9 T

Reading Question 30.5

A current moving upward along a vertical wire generates a magnetic field

- a. Pointed upward
- b. Pointed downwards
- c. Clockwise around the wire
- d. Counter-clockwise around the wire

©Cengage

Slide 8-10

Example field due to electron orbiting proton

Magnetic field of a current loop

 $|\vec{B}| = \frac{\mu_0 I R^2}{2(R^2 + \eta^2)^{3/2}} \hat{j}$

What is it at the center? * What is it lcm and 1 m above? What is it for Y >> R?

Right Hand Rule #2 and examples

- * Only the perpendicular component matters
- * Let's look at a few cases
- * Let's calculate a few cases

Reading Question 30.6

A magnetic field can only _____ the velocity of a moving charged particle. It can

- a. Accelerate, not decelerate
- b. Change the direction of, change the kinetic energy
- c. Accelerate, not do work
- d. Change the direction of, do no work.

Slide 8-12

Force Between Two Long, Straight Wires

Torque on a Current Loop in a Magnetic Field

- * When field is perpendicular to plane
- * When field is parallel to plane
- * In between?
- Torque attempts to align plane of current loop with the magnetic field
- * Be careful, the angle here is NOT the same as the angle for forces
- * Examples

 $egin{aligned} & au = NIABsin\psi \ & au = N\mu Bsin\psi \ & ec{ au} = nec{\mu} imes ec{B} \end{aligned}$

If there is potential for motion, there is potential energy

$$U = -ec{\mu} \cdot ec{B} = -\mu B cos\psi$$

