

Conduction electrons are free to move throughout conductor; positive ions are fixed in place.

© Cengage Learning

* Ok, somewhat silly

- * The electrons do the moving, but we pretend the current is in the direction of the protons
- I is the symbol for current, its units are amperes (A) or Coulombs/second

$$I = \frac{dq}{dt} \to q = \int dq = \int_0^t I dt$$

Reading Question 28.2

Current is defined by the rate of b. J/Cs imaginary positive c. J/eV particles passing through a section of wire. The SI unit for current is the ampere, what is an ampere equivalent to?

- a. C/eV
- d. C/s

©Cengage

Slide 8-4

$$\vec{J} = \frac{ne^2}{m_e} t \vec{E}$$

$$\sigma = \frac{ne^2}{m_e} t \rightarrow \vec{J} = \sigma \vec{E}$$

$$\sigma = \frac{A/v}{m} \text{ conductivity}$$

$$Resistivity$$

$$\frac{1}{\sigma} = \rho$$

$$\vec{E} = \rho \vec{J}$$
Higher conductivity, lower resistivity
Resistance - 1 V/A = 1 ohm = 1\Omega

Resistance

For a constant electrical field (see derivation in book)

Long, thin arrangement

of pegs is

like a long.

with a high

resistance R.

thin wire

$$R = \rho \frac{\iota}{A}$$

$$\rho(T) = \rho_0 [1 + \alpha (T - T_0)]$$

Short, thick arrangement of pegs is like a short, thick wire with a low resistance R.

B.

© Cengage Learning

 $R(T) = R_0 [1 + \alpha (T - T_0)]$ Reference temperature is 20 degrees celsius Examples, change configuration, change temperature

* The potential dropped as a current crosses a resistor is $\Delta V = IR$

* Circuit diagram, water analogy

Charles Knowles/Shutterstock

	Color	1st band (1st figure)	2nd band (2nd figure)	3rd band (multiplier)	4th band (tolerance)
	Black	0	0	100	
	Brown	1	1	101	
	Red	2	2	102	$\pm 2\%$
	Orange	3	3	103	
-	Yellow	4	4	104	
	Green	5	5	105	
	Blue	6	6	106	
	Violet	7	7	107	
	Gray	8	8	108	
	White	9	9	109	
	Gold			10-1	±5%
	Silver			10-2	±10%
					© Cengage Learning

Example with kilowatt hours