Electric Fields

Or, it's going to get harder

Fields

- * Represent an influence waiting to happen
- * Fields are produced by potential sources of interactions due to influences
- * There can be vector fields and scalar fields
- * Example

Think of the electric field

- * As produced by "source" charges, an influence waiting to happen
- They add vectorially. You calculate the influence and then place a charge in this influence to determine the force on a test particle
- * The electric field is ALWAYS WRT to a positively charged test particle
- * Units are N/C
- If I stick a charge with C coulombs in the field it experiences a force of N newtons

 $\vec{F_e} = \frac{kqq_1}{r^2}\hat{r} = q_1\vec{E} \rightarrow \frac{\vec{F_e}}{q_1} = \vec{E}$

Reading Question 24.2

Which of the following is true for a gravitational field but not true for an electric field?

- a. Magnitude of the field drops as the square of the distance from the source
- b. Has a constant of proportionality
- c. Is radially directed towards the source
- d. Depends on only one property of the source

$\bigcirc \frown$		~~~	$\sim \sim$	
90	en	Qd	qe.	
		J -	5	

Slide 8-4

Electrical field of a spherical charge $\vec{E} = \frac{\vec{F}}{q_{test}} = k \frac{q}{r^2} \hat{r}$

Don't forget r points towards location of electric field

Reading Question 24.1

An electric field and a temperature field differ in that:

- a. Only the electric field is a scalar field
- b. Only the temperature depends on the properties of its source
- c. Only the electric field has a directional component
- d. Only the temperature is a vector field

Let's do the hydrogen atom again

What about the electric field due to a collection of charges?

- * Same as for forces but easier
- * Calculate the magnitude of the electric field due to each particle
- * Separate into vector components
- * Add them up
- If you want the force a particle placed in that location would experience simply multiply the electric field by the particle's charge

© Cengage Learning

What if 1 went to 2e or -2e?

Far field approximation

Electric field from a continuous charge distribution

Wilson's lightning ball $ec{E}(r) = k rac{Q}{r^2} \hat{r}$

X

Franklin's lightning rod $\vec{E}(y) = \frac{kq}{(y(y-l))}\hat{j}$

More dipole moment stuff

This is how your microwave works

 $\Delta U > 0$

+Q

A. Reference configuration

CM -Q

Φ

 $U = -\vec{p} \cdot \vec{E}$

Ē

+Q

 $\Delta U < 0$

 \vec{E}

 \vec{E}

B. Potential energy increases.

© Cengage Learning