Refraction and Images Formed by Refraction

$$
\begin{aligned}
n_{i} \sin \left(\theta_{i}\right) & =n_{t} \sin \left(\theta_{t}\right) \\
n & =\frac{c}{v}
\end{aligned}
$$

Light is refracted when it changes media The refracted component bends towards the normal when
$n_{i}>n_{i}$

Water

$$
n_{\text {water }}=1.33
$$

nglass $=1.89$

Fill in the angles

Total Internal Reflection

Or, how you get information through fiber optics

A.
B.
C.

Only a possibility when $n_{t}<n_{i}$

$$
\sin \left(\theta_{c}\right)=\frac{n_{t}}{n_{i}} \quad \text { Show }
$$

Fiber Optics

Dispersion

Or, the index of refraction is really wavelength dependent

A.

B.
B.

This is how Rainbows are Formed

A. Double rainbow

B. Lower rainbow

C. Upper rainbow
a) Alexey Stiop/Shutterstock.com; b-c) © Cengage Learning

Notice, the ordering of colored is reversed

Example

$\delta ?$

Thin Lenses

Formed by piecing together 2 pieces of spheres

 Lens Maker Equation$$
\frac{1}{f}=(n-1)\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]
$$

Front of both surfaces

Object

Need More to Discuss

A.

TABLE 38.3 Sign conventions for thin spherical lenses.

Quantity	Positive	Negative
1. Image height h_{i} and magnification M	If image is upright	If image is inverted
2. Object distance d_{o}	If object is real (in front)	If object is virtual (behind)
3. Image distance d_{i}	If image is real (behind)	If image is virtual (in front)
4. Radius of curvature r	If surface is convex	If surface is concave
5. Focal length f	If lens is converging	If lens is diverging

What's the sign for the focal lengths of these two?

B.

Converging Vs Diverging

Very distant object's rays are parallel.

A. Converging lens

B. Diverging lens
© Cengage Learning

Let's design a lens

Generic Image Formation

$$
\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}} \quad M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}
$$

Examples, Math and Rays

 Image Behind Focal Point

 Image Behind Focal Point}

Image in Front of Focal Point

Magnifying Glass

A.

Microscope

Telescope

A.
B.

