Refraction and Images Formed by Refraction

$$n_{i}sin(\theta_{i}) = n_{t}sin(\theta_{t})$$

$$n = \frac{c}{v}$$
Light is refracted when
it changes media
The refracted
component bends
towards the normal
when
 $n_{t}>n_{i}$

Fill in the angles

Total Internal Reflection

Or, how you get information through fiber optics

Only a possibility when $n_t < n_i$ $sin(\theta_c) = \frac{n_t}{n_i}$ Show

Fiber Optics

Dispersion

Or, the index of refraction is really wavelength dependent

This is how Rainbows are Formed

A. Double rainbow

Notice, the ordering of colored is reversed

Formed by piecing together 2 pieces of spheres

Need More to Viscuss

TABLE 38.3	Sign	conventions	for	thin	spherical	lenses.
------------	------	-------------	-----	------	-----------	---------

Quantity	Positive	Negative		
1. Image height h_i and magnification M	If image is upright	If image is inverted		
2. Object distance do	If object is real (in front)	front) If object is virtual (behind		
3. Image distance d_i	If image is real (behind)	If image is virtual (in front)		
4. Radius of curvature r	If surface is convex	If surface is concave If lens is diverging		
5. Focal length f	If lens is converging			

What's the sign for the focal lengths of these two?

© Cengage Learning

B.

A.

Converging Vs Diverging

Generic Image Formation

 $=\frac{h_i}{h_c}=$ $= \overline{d_i} +$

Examples, Mathand Rays

Image Behind Focal Point

Image in Front of Focal Point

Magnifying Glass

A.

Christian Musat/Shutterstock.com

 $d_i \rightarrow \infty$

© Cengage Learning

