# Reflection and Images 

 Formed by Reflection

## Geometric Optics and the Ray approximation

A plane wave is represented by a single ray...

A.

B.


## Example - Sun and pinhole


A.

B.

## Law of Reflection



That's it

# Do You Understand it? 

Let's make sure we all understand the concept of the "Normal", its NOT the Normal force


## Want to see the light?



## Images Formed by Reflection


A.


B.

B. Specular reflection

# Plane Mirrors 



$$
\begin{aligned}
M & =1 \\
d_{i} & =d_{0}
\end{aligned}
$$

Upright

## No Magnification

Virtual
This reflected ray traces over its incident ray.

## Virtual vs Real

Demo

# How big a mirror do you need to see your feet? 

## Spherical Mirrors



Inside of sphere is reflective.

# Image Formation by 

 Principle Rays
## I'll define the focal point later, for now, $f=r / 2$



## Concave



## Concave

## Focal Point



## rays from infinity


$f=r / 2$

## B. Concave mirror

## How to get Numbers



$$
\begin{gathered}
M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}} \\
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f} \\
\text { works for both } \\
\text { concave and } \\
\text { convex }
\end{gathered}
$$

## Convex

## Example's

## Also, what does sign of image distance mean? It's positive if a real image is formed there



STSCI (Space Telescope Science Institute)

