Statistical and Thermal Physics: Homework 10

Due: 17 April 2018

1 Thermodynamics of spin systems

Consider a system of N spin-1/2 particles, each with magnetic dipole moment μ and in a magnetic field of magnitude B. Let n_+ the number of particles with spin up. The entropy of the system is

$$S = k \ln \left[\Omega(n_+) \right]$$

where $\Omega(n_+)$ is the multiplicity of the macrostate with n_+ particles with spin up. LONG but not HARD

- a) Determine an expression for the energy of the system given that there are n_+ particles with spin up.
- b) Show that the temperature of the system satisfies

$$\frac{1}{T} = \frac{k}{2\mu B} \ln\left[\frac{N - E/\mu B}{N + E/\mu B}\right]$$

and use the result to determine an expression for the energy equation of state E = E(T, N).

- c) List the range of possible values of E (in terms of μB and N) and plot the temperature as a function of E over the entire range. Describe when the temperature is positive and when it is negative.
- d) Determine the probability with which a single particle is in the spin up state in terms of T, N, μ and B. Repeat this for spin down.
- e) Using these probabilities, determine the mean energy \overline{E} for a single particle. How does this compare to the expression for the energy, E, of the entire system that you obtained earlier?

2 Chemical potential for a system of spin-1/2 particles

Consider a system of N spin-1/2 particles, each with magnetic dipole moment μ and in a magnetic field of magnitude B. Let n_+ the number of particles with spin up. LONG MEDIUM

- a) Determine an expression for the chemical potential of the system. Express your answer in terms of E,N,B,T and μ . Do not expand out T, or E just call it T or E.
- b) Determine conditions on n_+ that give a positive or a negative chemical potential. Your answer should be in terms of N and n_+ . There are two regimes to answer. One for positive T and one for negative T.

c) Suppose that $n_{+} = N/3$. Determine an expression for the chemical potential. If particles are added to the system in such a way that this ratio is preserved, will the system gain or lose energy?

3 Einstein solid: low temperature limit

For any Einstein solid

$$\Omega(N,q) \approx \left(1 + \frac{q}{N-1}\right)^{N-1} \left(1 + \frac{N-1}{q}\right)^q \sqrt{\frac{N+q-1}{2\pi(N-1)q}}$$
$$\approx \left(1 + \frac{q}{N}\right)^N \left(1 + \frac{N}{q}\right)^q \sqrt{\frac{N+q}{2\pi Nq}}$$

whenever $q \gg 1$ and $N \gg 1$.

In the low temperature limit $q \ll N$. LONGISH MEDIUM

a) Show that if $q \ll N$ then

$$\Omega(N,q) \approx \left(\frac{eN}{q}\right)^q \frac{1}{\sqrt{2\pi q}}$$

and

$$S = kq \left[\ln \left(\frac{N}{q} \right) - 1 \right].$$

You will discard one term in the entropy formula as q is large.

b) Use this to determine an expression for the temperature of the solid in terms of energy. If possible, invert the expression to get energy in terms of temperature.

4 Partition functions for artificial systems

Consider three systems, each with a single particle at temperature 10^5 K. System A has two states, one with energy 0 eV and the other with 10 eV. System B has three states, one with energy 0 eV and the other two each with 10 eV. System C has four states, two each with energy 0 eV and the other two each with 10 eV. Let Z_A be the partition function for system A, etc,... EASY

a) Which of the following is true? Explain your answer.

i)
$$Z_A = Z_B = Z_C$$
.
ii) $Z_A = Z_B \neq Z_C$.

ii)
$$Z_A = Z_B \neq Z_C$$
.
iii) $Z_A = Z_C \neq Z_D$

$$III) \ Z_A = Z_C \neq Z_B$$

- iv) $Z_B = Z_C \neq Z_A$.
- v) None of the partition functions are the same.

Now suppose that system A has a single particle and two states, one with energy 0 eV and the other with 10 eV. System B has two distinguishable particles and each could be in one of the two states of system A.

- b) Is $Z_A = Z_B$ in this case? Explain your answer.
- 5 Gould and Tobochnik, Statistical and Thermal Physics, 4.24, page 211.EASY

6 Interstellar heat bath

The molecule CN is often found in interstellar molecular clouds. This molecule has many states associated with rotational motion. Observations indicate that about 10% of all such molecules are in any one of the first three excited states, each of which has the same energy, 4.7×10^{-4} eV, above the ground state. Assuming that the molecules are in thermal equilibrium with a heat bath, determine the temperature of the heat bath. EASY

This addresses a famous issue in cosmology and is discussed in detail in P. Thaddeus, Annual Review of Astronomy and Astrophysics, vol. 10, p. 305 (1972).

7 Systems with degenerate energy levels

Some systems have degenerate energy levels, meaning that there are different states that have the same energy. Consider a system that has five states with energies $0, \epsilon, \epsilon, 2\epsilon, 2\epsilon$ (electrons in a hydrogen atom have this type of degeneracy). If $kT = 2\epsilon$, determine the probabilities with which the system will have energy 0, energy ϵ and energy 2ϵ .