Physics 342, Homework 4

Remember, x is dummy variable. You may need to write the functions you are minimizing as dependent on z, θ, etc. For example, in problem 2 you are minimizing a $z^{\prime}(\theta)$. The goal is to solve for z .

1: (medium) - Minimize $\int_{x_{1}, y_{1}}^{x_{2}, y_{2}} d s$ Where $d s=\sqrt{d x^{2}+d y^{2}}$. This is longer if you fail to notice what $\frac{d f}{d x}=0$ implies. Use equation 6.18 to find the solution. The solution is that $\mathrm{y}=\mathrm{Ax}+\mathrm{B}$. Essentially you are showing that the shortest path between two points in two dimensions is a straight line.

2: (medium) - Minimize the path along the surface of a circular cylinder of radius R. Essentially, minimize $\sqrt{d x^{2}+d y^{2}+d z^{2}}$ where R is constant. remember $x=R \cos (\theta)$ and $y=R \sin (\theta)$. Write the function that you are minimizing as $F(z(\theta))$. Show that your answer describes a helix. Use equation 6.18 again.

