## Physics 342, Homework 1

1: 1-9
2: 1-10
3: 1-13 (this is either really easy or really hard, maybe try crossing vector A with vector B)
4: 1-25 The unit vectors in the spherical coordinate system are given by
$\hat{e}_{\phi}=-\sin \phi \hat{i}+\cos \phi \hat{j}$
$\hat{e}_{\theta}=\cos \theta \cos \phi \hat{i}+\cos \theta \sin \phi \hat{j}-\sin \theta \hat{k}$
$\hat{e}_{r}=\sin \theta \cos \phi \hat{i}+\sin \theta \sin \phi \hat{j}+\cos \theta \hat{k}$
Following the procedure used in class for plane cylindrical coordinates do this problem assuming your initial vector is $r \hat{e}_{r}$. Hint $\hat{e}_{\phi}$ depends on $\hat{e}_{r}$ and $\hat{e}_{\theta}$ in a way that is not as straightforward to see as the time derivatives of the other unit vectors. See what you can do with factors of $-\dot{\phi}$ with trig functions to make this work.

5: 1-31 - don't forget that $r=\sqrt{x^{2}+y^{2}+z^{2}}$ and $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial r} \frac{\partial r}{\partial x}$ Also, you really only need to take the first partial derivative with respect to x or the 2 nd derivative with respect to x to figure this out since all taking the derivatives with respect to y and z changes is to make x go to y or z . This can be long or relatively short if you don't overdo the work.

6: Check the divergence theorem explicitly using the vector function $\vec{A}(x, y, z)=x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$ on a cube sides $L$ and with one corner at the origin with the cube in the upper positive $\mathrm{x}, \mathrm{y}, \mathrm{z}$ octant

7:Verify Stoke's theorem explicitly using the vector function $\vec{F}(x, y, z)=2 z^{2} \hat{i}+3 y^{2} \hat{j}$ on a square with sides of length one placed at the origin and residing in the x z plane. Take the first leg of the integral from the origin up the z axis then work your way around counterclockwise.

