
Research Computing @ CU Boulder

An Overview of Python

Programming

Lesson 7:

Using Compiled Code within Python

1

Nick Featherstone

feathern@colorado.edu

10/31/201

7
Python Programming

mailto:feathern@colorado.edu

Research Computing @ CU Boulder

Outline

• Python & C with Cython

• Python and Fortran with F2PY

10/31/201

7
Python Programming 2

Research Computing @ CU Boulder

Today We Use RC Jupyterhub

10/31/201

7
Python Programming 3

Visit https://jupyter.rc.colorado.edu

1) Log on with your tutorial credentials

2) Click

3) Select “virtual notebook server”

4) Click “Spawn”

Research Computing @ CU Boulder
10/31/201

7
Python Programming 4

Create a “New” “Terminal” session.

Research Computing @ CU Boulder

Once you have a terminal

• Clone the repository (all one line):

git clone

https://github.com/ResearchComputing/Python_Overview_Fall2017.git

• Start an interactive session:

sinteractive –N1 –n24 –t60 - - reservation=python-10.31

- -account=tutorial1

(two dashes before reservation and account, not one)

• Once your prompt changes, load the python module:

• module purge

• module load python/3.5.1

10/31/201

7
Python Programming 5

https://github.com/ResearchComputing/Python_Overview_Fall2017.git

Research Computing @ CU Boulder

Editing in the Terminal

• If you don’t know what to do, use nano

• Type “nano” to begin

• To exit: ctrl + x

• To save to file: ctrl + o (defaults to current file)

• To cut : ctrl +k

• To paste : ctrl +u

10/31/201

7
Python Programming 6

Research Computing @ CU Boulder
10/31/201

7
Python Programming 7

Generating a Collatz Sequence:
1. Pick a positive integer (n)
2. Generate a new number (m)

• If n is even, m = n//2
• If n is odd, m=3n+1

3. Repeat this process until you arrive at 1

(www.xkcd.com)

Collatz Conjecture:
• Every sequence will eventually

terminate at the number 1
• Unproven (go try…)
• Verified for numbers through 87 x 260

Example Sequences:
1 Length 1
2, 1 Length 2
3, 10, 5, 16, 8, 4, 2, 1 Length 8
21, 64, 32, 16, 8, 4, 2, 1 Length 8

Research Computing @ CU Boulder

Preparation
• Write a function named pycollatz that

• Accepts one parameter: an integer n

• Returns the Collatz-sequence length

of n

• Write a program that computes the time

required to compute each sequence

length for the first m integers (start with

m = 10,000)

• Use Matplotlib to plot the results

• Name your program timeit.py

10/31/201

7
Python Programming 8

import time
t0 = time.time()
…
clen = pycollatz(n)
t1 = time.time()
dt = t1-t0
times. append(dt)
…

Sample Timing Code

Research Computing @ CU Boulder

Cython (cython.org)

• Python tool used for integrating C/C++ and Python

• Use C libraries/functions from within Python

• Translate Python code into optimized, compiled C code

that can be called from within Python (Today)

• Our use case:

We have written some code in Python. We have no idea

how to code in C or Fortran, but we want to gain some of the

optimization benefits provided by a compiler.

10/31/201

7
Python Programming 9

Research Computing @ CU Boulder

Process Overview

1. Generate our python source code, save it with a .pyx

extension

2. Create a setup.py script

3. Run setup.py to generate a python module built using

compiled C-code

4. Use the module in a program

10/31/201

7
Python Programming

1

0

Before we begin:
Create a working directory: /projects/$USER/collatz

Research Computing @ CU Boulder

Step 1: Generate Python Source

• Save this to a file named collatz.pyx

10/31/201

7
Python Programming

1

1

def collatz(n):
"""Return the length of the Collatz series for n"""

slen = 1
while(n > 1):

slen +=1
if (n%2 == 1):

n = 3*n+1
else:

n = n//2
return slen

Research Computing @ CU Boulder

Step 2: Create the Setup Script
• Save this to a file named setup.py

10/31/201

7
Python Programming

1

2

from distutils.core import setup
from Cython.Build import cythonize

setup(
ext_modules=cythonize("collatz.pyx")

)

• Distutils (intrinsic module): Used for creating Python packages
https://docs.python.org/3.1/distutils/

• Cythonize -> generate c-code from Python source

https://docs.python.org/3.1/distutils/

Research Computing @ CU Boulder

Step 3: Run the Setup Script
• Save this to a file named setup.py

• Build the module

10/31/201

7
Python Programming

1

3

module load python/3.5.1 (if on Summit)
python setup.py build

export MODDIR=/home/$USER/my_modules
python setup.py install - -install-lib=$MODDIR

• Next we need to install the module, and tell Python where to put it.

• Finally, we tell Python where to look for our modules:

export PYTHONPATH=$MODDIR:$PYTHONPATH

Research Computing @ CU Boulder

The PYTHONPATH Variable

• Paths in Unix/Linux are lists of directories, colon-
separated:

• E.x. PATH=/usr:/usr/bin:/usr/local/bin

• Used by Linux when look for programs. First check /usr,
then /usr/bin, then /usr/local/bin etc.

• PYTHONPATH

• Colon-separated list of directories that tells Python where
to look for modules

• Python checks several default locations, including
subdirectories within its installation directory.

• Good practice: use a custom directory to store modules
that you write + set PYTHONPATH to access them.

10/31/201

7
Python Programming

1

4

Research Computing @ CU Boulder

Step 4: Call Your Function

• Next, import your function into your Python code:

• from collatz import collatz

• You should be able to do this from any location

• Exercise: revise your original timing code to time both

collatz and pycollatz. Plot their results on the same

graph.

10/31/201

7
Python Programming

1

5

Research Computing @ CU Boulder
10/31/201

7
Python Programming

1

6

My Results

Research Computing @ CU Boulder

F2PY

• Numpy tool used for integrating Fortran and Python

• Can call Fortran subroutines within Python

• Can access Fortran common blocks and module data from

within Python

• https://docs.scipy.org/doc/numpy-dev/f2py/

• Our use case:

We have written some optimized subroutines in Fortran. We

would like to use those routines in our Python code.

10/31/201

7
Python Programming

1

7

https://docs.scipy.org/doc/numpy-dev/f2py/

Research Computing @ CU Boulder

F2Py Process Overview

• Create your Fortran subroutine(s)

• Compile your Fortran code using F2Py

• From within Python:

• Import the module created by F2Py

• Call the your subroutine by passing Numpy datatypes that

correspond to the Fortran datatypes

• E.g., real*8 = float64, integer*4 = int32, etc.

10/31/201

7
Python Programming

1

8

Research Computing @ CU Boulder

Building a Module with F2Py

• Have a look at f2py/serial/example1.F90

• Build the module via:

• f2py -c example1.F90 -m ex1 (builds module named ex1)

• Examine the output (type “ls”)

• Run the code:

• python timeit.py

10/31/201

7
Python Programming

1

9

Research Computing @ CU Boulder
10/31/201

7
Python Programming

2

0

My Results 1:
Naïve approach

Research Computing @ CU Boulder
10/31/201

7
Python Programming

2

1

My Results 2:
numpy.sum(a*b)

Did we just outdo Intel-optimized NumPy?
Not quite… what’s different?

Research Computing @ CU Boulder
10/31/201

7
Python Programming

2

2

My Results 3:
numpy.dot(a,b)

NumPy wins? Yes… and no.
F2Py let’s us use OpenMP.

Research Computing @ CU Boulder

OpenMP with F2Py

• We can make use of multiple cores by compiling our Fortran code
using OpenMP directives

• Have a look at f2py/openmp/example1.F90

• Build the module via:
• f2py -c example1.F90 -m ex1 --opt="-O3 -fopenmp" –lgomp

• This compiles with the fopenmp flag and link to the GNU OpenMP
library

• Set the OpenMP thread count:
• export OMP_NUM_THREADS=8

• Run the code:
• python timeit.py

10/31/201

7
Python Programming

2

3

Research Computing @ CU Boulder
10/31/201

7
Python Programming

2

4

My Results

