
Python Workshop
Series Session 5:

Managing your
Python Environment

Nick Featherstone

Applied Mathematics

Daniel Trahan

Research Computing

Slides: https://github.com/ResearchComputing/Python_Spring_2019

Outline

• PYTHONPATH and custom modules

• Package management with Conda

• Package management with Pip

• Managing multiple Python installations with
Conda

Before we Begin

• No Jupyter notebooks today!

• Open a shell (do not activate your environment)

Recall:
Where do modules live?

• Python places modules deep within its directory structure.

• Best not to place your custom modules here

• Let’s have a quick look. (Bash commands follow)

which python

/custom/software/miniconda3/envs/idp/bin/python

export PYDIR=/custom/software/miniconda3/envs/idp

ls $PYDIR/lib/python3.6/site-packages/

The “Path” Concept

• Linux and macOS use special environment
variables to manage system behavior.

• Path variables are one subset
• Colon-separated list of directories

• Searched from left to right until SOMETHING is
found (error if not found)

Example: PATH variable

• PATH tells the OS where to search for executables

• In your terminal, try: echo $PATH

• You should see something similar to:
• /usr/bin:/bin

• When we invoke a program name, the OS checks
1. /usr/bin
2. /bin

• If program not found within PATH directories,
we get an error

Quick Exercise

• Open a FRESH terminal window

• Set PATH to a null value:
• TYPE: export PATH=

• Try running the ‘ls’ command

• Close the window via ‘exit’

Quick Exercise

• Open a FRESH terminal window

• Print the value of your PATH variable:
• TYPE: echo $PATH

• Which Python interpreter do you get?
• TYPE: which python

• Activate your python environment and repeat the
echo and which commands.

• Conda is an environment manager

The PYTHONPATH Variable

• PYTHONPATH
• A Python-specific path variable
• tells Python where to find modules

• Recommendation:
• Use PYTHONPATH to manage modules that YOU create
• Use Conda or Pip to manage 3rd party software

• When importing a module, Python will check:
1. directory from which script was run
2. directories in PYTHONPATH
3. Installation-dependent defaults (including site-packages

directory)

PYTHONPATH Example
• Activate your Python environment

• DO NOT start a Jupyter notebook

• Change to the session 7 directory

• Two directories:
• modules1 – contains mod1.py
• modules1 – contains mod1.py and mod2.py

• Copy/paste one of the export commands at the top of test_path.py

(Omit the hastag #)

• Run: python test_path.py

• Rerun after copy/pasting the other export command

Introspection via sys.path

• Can access list of module directories within program via
the path list (sys module)

• Path list:
• Can be manipulated like any other list
• populated as:

[script directory, PYTHONPATH, installation dependent defaults]

• path[0] is null string “ “ when running interactively

• Windows note:
• I don’t usually work in Windows
• When I do, this is how I manipulate PYTHONPATH

import sys

print(sys.path)

Package Management
with Conda

• General environment manager (not just for Python)

• Do not confuse with Anaconda (full-blown Python distro)

• Manages packages within a Conda environment

• Packages downloaded from remote channels
• Try: conda config --get channels (we added Intel)

• Manages & tracks non-python dependencies (e.g., LAPack)

• Very useful for managing multiple python installations

• Advice/Opinions (I prefer Conda):
• In my experience: a bit more intuitive than PIP
• In my experience: great for complicated package installs
• Recommend use when managing your own python installation

Conda Install
• Let’s install the twisted network-programming package

• First, check for existence:

conda search twisted

conda install twisted

• If the package is found, we can install it:

• Conda will resolve dependencies for us.

• We can now see that the package is installed:

conda list ls $PYDIR/lib/python3.6/site-packages/

Conda Uninstall

• First, restart python and verify you can import twisted

• Let’s remove the package (reinstall later if you want).

• Be careful. Conda tries to prevent broken packages.

• If other packages depend on the one being removed,

they may be downgraded or removed as well.

conda uninstall twisted

Package Management
with PIP

• Pip Installs Packages (Recursive Acronym)

• Installs packages within any environment
• can work alongside Conda

• Packages provided by Python Package Index (PyPI)

• Does not manage non-Python dependencies like Conda

• Advice: Use when:
• working with Python installation you do not administer

• working with non-conda Python installations

• installing simple packages without complex dependency trees

Installation with PIP
• Works similarly to conda (can run pip search).

• Let’s try installing h5py for next week…

• Activate your environment

• Recommend you specify non-system directory
via --user flag (installs to ~/.local) :

• Now go ahead and uninstall h5py via:

pip install h5py --user

pip uninstall h5py

Installation with PIP

• Can run into conflicts if we have multiple Python
installs all sharing ~/.local

• Specify custom directory via --prefix flag:

• More robust, but requires setting PYTHONPATH:

• Cumbersome. Why not just use Conda?

pip install h5py --prefix=~/my_modules

export PYTHONPATH=~/my_modules/lib/python3.6/site-packages/

PIP uninstall

• Go ahead and uninstall h5py again

pip uninstall h5py

Final Note on PIP

• Always use --user or --prefix

• Avoid running pip as root (sudo pip install)

• Best not to modify your system python’s site-packages
directory

Multiple Python Installs
with Conda

• Activate your python environment (if needed)

• Start to install h5py, BUT DO NOT CONFIRM

• Many packages will be downgraded.

• Is that what we want? Not sure?

• Let’s set up a separate Python installation for h5py

• Enter ‘n’ to cancel h5py install

conda install h5py

Multiple Python Installs
with Conda

• Open a fresh terminal

• Create a new python 3 environment:

• Can view available environments via:

• Delete environment via:

conda create -n h5py intelpython3_core python=3

conda-env --list

conda remove –name env_name --all

Multiple Python Installs
with Conda

• Now we can install h5py

• Downgrades no longer worry us.

• Original install (idp) remains unchanged

source activate h5py

conda install h5py

