Python Workshop
Series Session 5:
Managing your
Python Environment

Nick Featherstone
Applied Mathematics

Daniel Trahan
Research Computing

Slides: https://github.com/ResearchComputing/Python_Spring_2019

P — Be Boulder
UNIVERSITY OF COLORADO BOULDER .




Outline

« PYTHONPATH and custom modules
« Package management with Conda
« Package management with Pip

« Managing multiple Python installations with
Conda

P — Be Boulder
UNIVERSITY OF COLORADO BOULDER .



Before we Begin

* No Jupyter notebooks today!
* Open a shell (do not activate your environment)

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



Recall:
Where do modules live?

« Python places modules deep within its directory structure.
* Best not to place your custom modules here
 Let’'s have a quick look. (Bash commands follow)

which python \

/custom/software/miniconda3/envs/idp/bin/python

export PYDIR=/custom/software/miniconda3/envs/idp

Is $PYDIR/lib/python3.6/site-packages/

By researen compung Be Boulder.
UNIVERSITY OF COLORADO BOULDER




The “Path” Concept

 Linux and macOS use special environment
variables to manage system behavior.

 Path variables are one subset

« Colon-separated list of directories

« Searched from left to right until SOMETHING is
found (error if not found)

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



Example: PATH variable

 PATH tells the OS where to search for executables
* In your terminal, try: echo $PATH

* You should see something similar to:
* /usr/bin:/bin

* When we invoke a program name, the OS checks
1. /usr/bin
2. /bin

* If program not found within PATH directories,
we get an error

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



Quick Exercise

* Open a FRESH terminal window

« Set PATH to a null value:
* TYPE: export PATH=

* Try running the ‘Is’ command
* Close the window via ‘exit’

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



Quick Exercise

* Open a FRESH terminal window

* Print the value of your PATH variable:
* TYPE: echo $PATH

* Which Python interpreter do you get?
 TYPE: which python

 Activate your python environment and repeat the
echo and which commands.

« Conda Is an environment manager

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



The PYTHONPATH Variable

» PYTHONPATH

« A Python-specific path variable
« tells Python where to find modules

« Recommendation:
« Use PYTHONPATH to manage modules that YOU create
« Use Conda or Pip to manage 3" party software

* When importing a module, Python will check:
1. directory from which script was run
2. directories in PYTHONPATH

3. Installation-dependent defaults (including site-packages
directory )

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



PYTHONPATH Example

 Activate your Python environment
« DO NOT start a Jupyter notebook
« Change to the session 7 directory

« Two directories:
* modulesl — contains modl.py
* modulesl — contains mod1.py and mod2.py

« Copy/paste one of the export commands at the top of test_path.py
(Omit the hastag #)

* Run: python test_path.py

« Rerun after copy/pasting the other export command

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



Introspection via sys.path

« Can access list of module directories within program via
the path list (sys module)

Import sys
print(sys.path)

« Path list:
« Can be manipulated like any other list
* populated as:
[ script directory, PYTHONPATH, installation dependent defaults]
« path[0] is null string “ “ when running interactively

« Windows note:
| don’t usually work in Windows
 When I do, this is how | manipulate PYTHONPATH

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



Package Management
with Conda

General environment manager (not just for Python)
Do not confuse with Anaconda (full-blown Python distro)
Manages packages within a Conda environment

Packages downloaded from remote channels
* Try: conda config --get channels (we added Intel)

Manages & tracks non-python dependencies (e.g., LAPack)
Very useful for managing multiple python installations

 Advice/Opinions (I prefer Conda):
* In my experience: a bit more intuitive than PIP
* In my experience: great for complicated package installs
« Recommend use when managing your own python installation

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



Conda Install

« Let's install the twisted network-programming package
 First, check for existence:

conda search twisted

« If the package is found, we can install it:

conda install twisted

« Conda will resolve dependencies for us.
« We can now see that the package is installed:

conda list Is SPYDIR/lib/python3.6/site-packages/

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



Conda Uninstall

First, restart python and verify you can import twisted

Let’'s remove the package (reinstall later if you want).

conda uninstall twisted

Be careful. Conda tries to prevent broken packages.

If other packages depend on the one being removed,
they may be downgraded or removed as well.

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



Package Management
with PIP

* Pip Installs Packages (Recursive Acronym)

* Installs packages within any environment
« can work alongside Conda

« Packages provided by Python Package Index (PyPl)
* Does not manage non-Python dependencies like Conda

» Advice: Use when:
« working with Python installation you do not administer
« working with non-conda Python installations
* installing simple packages without complex dependency trees

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



Installation with PIP

* Works similarly to conda (can run pip search).
* Let’s try installing h5py for next week...
 Activate your environment

« Recommend you specify non-system directory
via --user flag (installs to ~/.local) :

pip install h5py --user

* Now go ahead and uninstall h5py via:

pip uninstall h5py

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER




Installation with PIP

« Can run into conflicts if we have multiple Python
Installs all sharing ~/.local

« Specify custom directory via --prefix flag:

pip install h5py --prefix=~/my_modules

* More robust, but requires setting PYTHONPATH:

export PYTHONPATH=~/my_modules/lib/python3.6/site-packages/

« Cumbersome. Why not just use Conda®?

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



PIP uninstall

» Go ahead and uninstall h5py again

Final Note on PIP

pip uninstall h5py

« Always use --user or --prefix

« Avoid running pip as root (sudo pip install)

» Best not to modify your system python’s site-packages
directory

&)

Research Computing

UNIVERSITY OF COLORADO BOULDER

Be Boulder.



Multiple Python Installs
with Conda

 Activate your python environment (if needed)
« Start to install h5py, BUT DO NOT CONFIRM

conda install h5py

« Many packages will be downgraded.

* Is that what we want? Not sure?

 Let's set up a separate Python installation for hSpy
« Enter ‘'n’ to cancel h5py install

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER



Multiple Python Installs
with Conda

* Open a fresh terminal
* Create a new python 3 environment:

conda create -n h5py intelpython3_core python=3

 Can view available environments via:

conda-env --list

 Delete environment via:

conda remove —hame env_name --all

@T Research Computing Be Bﬂ“lder-

UNIVERSITY OF COLORADO BOULDER




Multiple Python Installs
with Conda

* Now we can install h5py

source activate h5py
conda install h5py

» Downgrades no longer worry us.
« Original install (idp) remains unchanged

By researen compung Be Boulder.
UNIVERSITY OF COLORADO BOULDER



