
Python Workshop
Series Session 4:

Objects and
Modules

Nick Featherstone

Applied Mathematics

Daniel Trahan

Research Computing

Slides: https://github.com/ResearchComputing/Python_Spring_2019

Outline

• Objects & Methods

• Operator Overloading

• Modules

• Note: Due to time constraints, we will not
discuss inheritance. See online text,
chapter 23 for a concise overview

Classes & Objects in Python

• Class refers to a complex data type that may contain both
associated values and associated functions

• Distinct instances of a class are referred to as objects

• Methods are defined as functions within class definition

• Class Definition syntax (try this out):

class myclass:

def __init__(self):

self.val = 2

def setval(self , x):

self.val = x

def display(self):

print(self.val)

class keyword

self parameterinit method
(double underscores)

additional

methods

Instantiation

• Initialize objects by calling the class name as a function.

• The init method is run at instantiation time

• Object attributes are referred to by prepending the object
name to the attribute, with a DOT in between

obj1 = myclass()

print(obj1.val)

Using Methods

• Class methods are called by prepending the object name to
the method name, with a DOT in between

• The self parameter is “silent” (not explicitly passed).

• Self is understood to refer to the particular instance of the
class calling the method

obj1 = myclass()

obj2 = myclass()

obj1.setval(42)

obj1.display()

obj2.setval(37)

self refers to obj1

self refers to obj2

Object Example: Vectors

• Recall that a vector in N-dimensional space is a
combination of N numbers.

• The ith number represents the magnitude of something
in the i-direction

• Example: Velocity (miles per hour)
• v = vx x + vy y + vz z

• v = 1x + 12y + 3z

• Speed in x-direction (vx): 1 mph

• Speed in y-direction (vy): 12 mph

• Speed in z-direction (vz): 3 mph

vx

vy
v

Some Vector Properties

• Addition and Subtraction is component-wise:
• v - w = (vx-wx)x - (vy-wy)y - (vz-wz)z

• Vector magnitude |v|:

• 𝒗 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

• Vector dot product 𝒗 ∙ 𝒘
• 𝒗 ∙ 𝒘 = vxwx + vywy + vzwz

• Vector cross product 𝒗 × 𝒘
• if 𝒃 = 𝒗 × 𝒘 then:

• bx = vywz – vzwy

• by = vzwx – vxwz

• bz = vxwy – vywx

Exercise 1

• Let’s have a look at vectors.py

• Add a method named mag to the vector class that
accepts no parameters (other than self).

• Have your method return the vector’s magnitude (a
scalar value)

• Recall that exponentiation in Python is done via **

• A**2 = ‘A squared’

• A**(0.5) = ‘square root of A’

• Vector magnitude |v|:

• 𝒗 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

Exercise 2

• Add a method named plus to the vector class that
accepts an additional parameter named other.

• Assume that other is an object of type “vector”

• The method should return a new vector which is
created by taking the vector sum of self and other.

• Once you’ve done that, create another method named
minus that returns the difference of self and other.

Exercise 3

• Add a method named dot to the vector class that
accepts an additional parameter named other.

• Assume that other is an object of type “vector”

• The method should return the vector dot product of self
and other.

• Finally, when that’s finished, add a similarly-structured
method named cross that returns the vector cross
product of two vectors.

Operator Overloading

• v.add(w) is concise, but non-intuitive

• Is there a way to say “v +w” ? Yes!

• Follow these steps:

• Open vectors_completed.py

• Create a COPY of the plus function

• Name the new function __add__ (two underscores

on each side)

• Try using v + w in your code now

Operator Overloading

• Several special method names exist:
• __sub__ : replaces –

• __mul__ : replaces * (two of the same object)

• __rmul__ : replaces * (object and scalar)

• __truediv__ : replaces /

• __floordiv__ : replaces //

• __pow__ : replaces **

Exercise 4

• Following our __add__ example, overload operators
with the remaining methods in the vector class as
follows:

• minus : - (__sub__)

• dot : * (__mul__)

• cross : ** (__pow__)

Modules

• Python allows us to collect associated functions, class,
and variables into modules

• Modules may be imported into other modules or into
your main program

• Essentially any .py file can be imported as a module

• Let’s have a look at my_module.py

Defining Modules

def myfunc():

print(‘my function’)

def main():

print(“hello world”)

val1 = 1

val2 = 2

if __name__ == “__main__”:

main()

Executed when

module is imported

Executed only if module

is being run as the main

program

Any .py file with function definitions etc. works as a module.

Importing Modules

• We can import an entire module, or only certain items

• To reference a module variable, use the syntax:

module_name (DOT) variable_name

• We can assign an alias to our module name at import time

using the as keyword

• See import_module.py

import my_module

print(my_module.val1)

my_module.myfunc()

import my_module as mm

print(mm.val1)

mm.myfunc()

Selective importing

• Selectively import specific items using the from keyword

• Syntax:

from ‘module name’ import ‘variable name’

• Can import everything using * (take care!)

• When using from, the module name is not prepended

from my_module import val1

print(val1)

from my_module import *

print(val2)

myfunc()

Intrinsic Python Modules

• https://docs.python.org/3/py-modindex.html

• Some particularly useful modules:
• math – provides sine, cosinie, sqrt etc.

• random – for random number generation

• time – useful for measuring execution time

• sys – system/ info (e.g., getrecursionlimit , argv)

• os -- various system routines (ls, mkdir, etc.)

• tkinter – Python GUI utilities

https://docs.python.org/3/py-modindex.html

Agument Lists

• sys.argv is particularly useful for scripting

• Lists all command-line arguments passed to
program

• sys.argv[0] = program name

• Open / examine argv.py

Where do modules live?

• Python places modules deep within its directory structure.

• Best not to place your custom modules here

• Let’s have a quick look. (Bash commands follow)

which python

/custom/software/miniconda3/envs/idp3/bin/python

export PYDIR=/custom/software/miniconda3/envs/idp3

ls $PYDIR/lib/python3.6/site-packages/

PYTHONPATH

import sys

sys.path.append('/path/to/my/modules')

• Python refers to the environment variable, PYTHONPATH

for possible module locations.

• We can manipulate PYTHONPATH within our program.

• More on PYTHONPATH and package management next

time.

RC Jupyterhub

• Web-based access to your data on Summit
and the Petalibrary

• https://jupyter.rc.colorado.edu (note ‘https’)

• Can test upcoming interface at:
• https://tutorials-jupyter.rc.colorado.edu

https://jupyter.rc.colorado.edu/

JupyterLab

• More sophisticated notebook interface

• https://jupyterlab.readthedocs.io/en/stable/

