
Python Workshop
Series Session 1:

Hello World!
Nick Featherstone

Applied Mathematics

&

Daniel Trahan

Research Computing

Slides: https://github.com/ResearchComputing/Python_Spring_2019

Nuts and Bolts Overview
of Python Programming

Who are we?

Why are we here?

My Background:
Astro & Geophysical CFD

Should You Be Here?

Target Audience:

(minimally) experienced programmers

Preparation:
Is Intel’s distribution for Python 3.x installed?

If not: see installation instructions!

Workshop Series Outline

Feb 26 overview, variables, I/O

Mar 5 conditionals, functions

Mar 12 loops, lists etc.

Mar 19 objects, methods, modules

Apr 2 Package management

Apr 9 NumPy (efficiency tips)

Apr 16 Matplotlib (creating plots)

Apr 23 H5Py (portable file format)

(Extra) F2Py and Cython

Python Programming

Fundamentals

Python

for Research

Useful References

• Free Online Text
• How to Think Like a Computer Scientist (Wentworth et al.)

• http://openbookproject.net/thinkcs/python/english3e/index.html

• Highly recommended

• Textbook
• Python Programming:

An Introduction to Computer Science (Zelle)

http://openbookproject.net/thinkcs/python/english3e/index.html

Today’s Session:
Getting Around in Python

• Overview

• Running Python programs

• Variables and Arithmetic

• Basic I/O

• Recommended Reading:
• Online Text Chapters: 1, 2, 13 (files)

Python, an Interpreted Language

• Python is an interpreted language

• Separate program (the interpreter) runs Python code.

• Interpreters execute code “naively.” (line by line)

• Compilers take holistic approach. Interpreters do not.

• Efficiency losses when compared to compiled code.

Compilation vs. Interpretation

Source Code

x = 2*a

x = x + 2*b

x = x + 2*c

Interpreted Program

x = 2*a

x = x + 2*b

x = x + 2*c
3 multiplies; 2 adds

Compiled Program

x = 2*(a + b + c)
1 multiply; 2 adds

• The NumPy, Cython & F2Py packages help to

overcome this limitation (weeks 5 and 8).

First Program

• Open a text editor and type:

• Save the file as hello.py

• This is a complete Python program
• … no semicolons, no brackets
• … no “begin program,” no “end program,” etc.
• .py extension customary (not required)

print(“hello world”)

Running a Python Program

There are various ways to invoke the interpreter

• Command line (1): “python hello.py”

• Command line (2): ./hello.py (similar to bash script)

• Interactive sessions

• Jupyter Notebook (or other IDE)

…follow along as we try a few…

Command Line (1)

• Typical method for running Python programs.

• To use this method:
1. Open a shell (“anaconda prompt” in Windows)

• Activate your conda environment:

source activate idp OR conda activate idp

1. Navigate to the folder containing hello.py

2. Type: python hello.py

Command Line (2)

• Can execute code in fashion similar to a bash script

• Must add “shebang” sign #! and path to python interpreter:

• Try it (hello2.py):

1. which python

2. chmod +x hello2.py

3. ./hello2.py

#! path-to-python

print(“hello”)

Running the Interpreter Directly

• Similar to IDL and R interpreters

• Type python and enter statements one at a time

• Type exit() when finished (exit is a function)

• Let’s try it out…

• To run existing program within interactive session:
• exec(open(“hello.py”).read())

• This is clunky and nonstandard

Checking the Python Version

• We can access the python version within a program

• Save this as ./hello3.py

• Type: chmod +x hello3.py

• ./hello3.py

• sys is a module (collection of functions & variables)

• version is a variable defined within the sys module

#! /usr/bin/python

import sys

print(sys.version)

Jupyter Notebook

• Browser-integrated IDE

• Popular for interactive data-analysis

• I will use this throughout the workshop

• Let’s try out the notebook
• Access your shell (“anaconda prompt” in Windows)
• Type: source activate idp (or conda activate)
• Type: jupyter notebook note the “Y”
• Follow along

The Jupyter Interface

• Jupyter supports different interactive notebook types (e.g., R, Python 2.x etc.)

• Start a Python 3 notebook

Click “New”

Click “Python 3”

The Jupyter Interface

• Pressing ‘enter’ starts a new line

• Pressing ‘shift’ + ‘enter’ executes all lines of code within a cell

NOTE: Typical Program Structure

• Customary to include main program inside function

• Very helpful for complex and/or production codes

• Program is a function definition + function call

• Unnecessary for our short exercises

def main():

print(“hello world”)

if __name__ == “__main__”:

main()

Variables in Python

• Variables are not declared (implicitly typed)

• Variables are created at assignment time

• Variable type determined implicitly via assignment
• x = 2 int

• y = 3.0 float

• Z = “hello” str double or single quotes

• z = True Bool note capital “T” , “F” in False

• Beware: Python is CASE SENSITIVE (z is not Z)

• Check variable type using type function:
• print(‘z is: ‘, type(z))

Arithmetic in Python
• Arithmetic in Python respects order of operations

• Addition: +

• Subtraction: -

• Multiplication: *

• Division: / (beware: returns float result)

• Floor Division : // (returns int or float; rounds down)

• Mod Division : % 3%2 1

• Exponentiation: ** 2**4 16

• Can concatenate strings using “+”
• x = ‘hello’ + ‘ there’

• print (x) displays ‘hello there’

Print Function: Call Syntax

print(item1, item2, item3, …, sep = ‘ ‘, end= ‘\n’)

• item1, item2, item3

• Comma-separated list of variables whose values you wish to display

• sep:

• optional keyword parameter

• separation string inserted between displayed values (defaults to

whitespace)

• end:

• optional keyword parameter

• string appended to end of printed values (defaults to newline)

Calling Print

• Start with this: name = ‘John’

age = 30

name2 = ‘Mary’

age2 = 31

print(name, ‘is’, age, ‘years old.’)

print(name2, ‘is’, age2, ‘years old.’)

print(name, ‘is’, age, ‘years old.’ , end = ‘ ; ‘)

print(name2, ‘is’, age2, ‘years old.’)

print(name, age, sep= ‘ : ‘)

print(name2, age2, sep = ‘ : ‘)

• Then try these different print combinations:

Type Conversion

• Variables can be recast using type conversion functions

• x = int (43.4) x = 43

• y = float (x) y = 43.0

• z = str (x) z = “43”

• n = bool (0) n = False

• m = bool (x) m = True

Basic User Input

• The input function can be used to grab user input:

num_str = input(“Enter a number: “)

cat_name = input (“What is your cat’s name?”)

• Accepts one string argument that contains the prompt
seen by the user.

• Note that it ALWAYS returns a string.

• Recast as int or float to do math…

Exercise

Write a short program that asks the user their
age.

Have the program print a message indicating
how old the user will be in 10 years.

Variables and Memory

• Memory in python is a bit non-intuitive (to me at least)

• Characters and integers exist in one place in memory

• Can explore this using the “is” operator
• True if variables point to same memory location

• False otherwise

• DOES NOT compare VALUES

• Try these:

a = 1

b = 1

print (a is b)

a = 1.0

b = 1.0

print (a is b)

a = ‘T’

b = ‘T’

print (a is b)

Variables and Memory
• Intrinsic variables, like ‘int’ don’t occupy a set amount of RAM

• e.g., all ‘ints’ are not 4 bytes…

• Can explore this using the getsizeof function

• part of the sys module

• returns size of an object in bytes

• Try these:

• Standard X-byte datatypes available via NumPy package (week 5)

import sys

print(sys.getsizeof (2**30))

import sys

print(sys.getsizeof (2**60))

Lists in Python

• Multiple values can be grouped into a list
• mylist = [1, 2, 10]

• List elements accessed with [] notation

• Element numbering starts at 0

• print (mylist [1]) displays 2

• Lists can contain different variable types
• mylist = [1, ‘two’ , 10.0]

• Strings can be accessed element-wise like a list
• mystring = ‘John’

• print (mystring[1]) displays ‘o’

• More on lists in two weeks…

I/O: Writing to a File
generate some data

line1 = “This is the first line”

line2 = “This is the second line”

write data to a file

filename = ‘myfile.txt’

filemode = ‘w’ use ‘w’ when writing; ‘r’ when reading

file = open (filename, filemode)

file.write(line1)

file.write(line2)

file.close()

I/O: Reading From a File

read data from a file (use readline)

filename = ‘myfile.txt’

filemode = ‘r’ use ‘w’ when writing; ‘r’ when reading

file = open (filename , filemode)

line1 = file.readline()

line2 = file.readline()

file.close()

print(line1)

print(line2)

NOTE: file.read() will read entire file into single string

