
LECTURE 9: Monte Carlo Methods I

November 19, 2012

1 Introduction

1.1 Brief history of the Monte Carlo method

The idea of the Monte Carlo (MC) method is a lot older than the computer. The name
Monte Carlo is relatively new - it was suggested by Nicolas Metropolis in 1949 because
of the similarity of statistical simulation to games of chance (Monaco was the center of
gambling). Under the name statistical sampling, the MC method stretches back to times
when numerical calculations were performed using pencil and paper.

At first, Monte Carlo was a method for estimating integrals which could not be solved
by other means. Integrals over poorly-behaved functions and multidimensional integrals
were profitable subjects of the MC method.

The famous physicist Richard Feynman realized around the time of the Second World
War that the time of electronic computing was just around the corner. He created what
could be described as a highly pipelined human CPU, by employing a large number of
people to use mechanical adding machines in an arithmetic assembly line. A number of
crucial calculations to the design of the atomic bomb were performed in this way.

It was in the last months of the Second World War when the new ENIAC electronic com-
puter was used for the first time to perform numerical calculations. The technology that
went into ENIAC had existed even before but the war had slowed down the construction
of the machine. The idea of using randomness for calculations occurred to Stan Ulam
while he was playing a game of cards. He realized that he could calculate the probability
of a certain event simply by repeating the game over and over again. From there it was a
simple step to realize that the computer could play the games for him.

This seems obvious now, but it is actually a subtle question that a physical problem with
an exact answer can be approximately solved by studying a suitable random process.

Nowadays Monte Carlo has grown to become the most powerful method for solving prob-
lems in statistical physics - among many other applications.

The name Monte Carlo is used as a general term for a wide class of stochastic methods.
The common factor is that random numbers are used for sampling.

2 Monte Carlo integration - simple sampling

One of the simplest but also effective uses of the Monte Carlo method is the evaluation
of integrals which are intractable by analytic techniques. In the simplest case, we wish to

1

obtain the one-dimensional integral of f (x) over some fixed interval [a,b]:

I =
∫ b

a
f (x)dx

One-dimensional integrals can be effectively calculated using discrete approximations
such as the trapezoidal rule or Simpson’s rule (discussed in Chapter 5). In order to illus-
trate the MC integration technique, we apply it first to the one-dimensional case and then
extend the discussion to multidimensional integrals (where the other methods become
computationally very expensive and thus less effective).

2.1 Hit-or-miss method

In the so-called "hit-or-miss" Monte Carlo integration, the definite integral is estimated
by drawing a box which bounds the function f (x) in the interval [a,b]; i.e. the box extends
from a to b and from 0 to fmax where fmax > f (x) throughout the interval. Then N points
are dropped randomly into the box. An estimate for the integral can now be obtained by
calculating the total number of points N0 which fall under the curve of f (x); i.e.

Iest =
N0

N
A

where A = (b−a) fmax is the area of the box.

Each of N random points is obtained by generating 2 uniformly distributed random num-
bers s1 and s2 and taking

x = a+ s1 ∗ (b−a)
y = s2 ∗ fmax

as the x and y coordinates of the point.

.

.

.

.

..

.
.

. .

.

.
.

.

.

.

.....

.

.

.

.
.

.
.
.

.

.

.
. .

.

...

.
.

a b

fmax
.
. .

.

.

..

.
.

.

.
.

. .

.

.

.

.
.

.

.

.
.

.
..

..

.

..

.

.

.
.

Figure 1: Hit-or-miss MC. Points are generated randomly inside a rectangular area which
bounds the function f (x) in the interval [a,b]. The number of points under the curve is
calculated to obtain an estimate of the integral.

2

The estimate of the integral becomes increasingly precise as N → ∞ and will eventually
converge to the correct answer. Obviously, the quality of the answer depends on the qual-
ity of the random number generator sequence which is used. We can obtain independent
estimates by repeating the calculation using different random number sequences. Com-
paring the values gives an idea of the precision of the calculation.

Example 1: Estimating the value of π

As a simple illustration of the "hit-or-miss" method, we can consider the estimation of
the numerical value of π. We generate N random points in the square x ∈ [−1,1] and y ∈
[−1,1]. Then we calculate how many of those points landed inside the circle x2 + y2 = 1.
Denote this number by N0. The ratio of the two areas is

Acircle

Asquare
=

πR2

4R2 =
π

4
≈ N0

N

Thus an estimate of π is obtained from

π≈ 4N0

N

The following C code can be used to calculate an estimate of π for N = 1000−10000.

void init_random_generator(long iseed);
double random_generator();

int main(void)
{

long int iseed=23455;
int i, j, n, n_tot, n_circle;
double x, y, ratio;

/* Initialize random number generator */
init_random_generator(iseed);
n_tot=1000;

/* Loop over different values of N */
for(n=0; n<10; n++) {

/* Throw N points within a box [-1,1][-1,1] */
n_circle = 0;
for(i=0; i<n_tot; i++) {

x = 2.0*random_generator()-1.0;
y = 2.0*random_generator()-1.0;
/* Determine if inside the circle */
if(x*x+y*y < 1.0) n_circle ++;

}
ratio = (double)n_circle/(double)n_tot;
/* Print out the obtained value of PI */
fprintf(stdout,"N = %d PI = %10.8lf\n",n_tot,ratio*4.0);
/* increase the number of points */
n_tot += 1000;

}
}

3

Figure 2 shows the distribution of 1000 random points inside the square.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Distribution of 1000 random points.

Increasing the number of points inside the square, we get the following sequence of esti-
mates.

N = 1000 PI = 3.13200000
N = 2000 PI = 3.14200000
N = 3000 PI = 3.10800000
N = 4000 PI = 3.11800000
N = 5000 PI = 3.13040000
N = 6000 PI = 3.12266667
N = 7000 PI = 3.15142857
N = 8000 PI = 3.12450000
N = 9000 PI = 3.15333333
N = 10000 PI = 3.15600000

EXACT VALUE = 3.14159265

The estimate can be improved by choosing a certain value of N (e.g. N = 10000) and
calculating the average value obtained from several independent calculations (where each
N points are placed inside the square using different random number sequences).

The following result was obtained using 1000 independent measurements.

N = 10000 m = 1000 PI = 3.14140240

This illustrates a general feature of the Monte Carlo method: The precision of the calcu-
lation is determined by the statistics of the sampling.

A single measurement gives us a crude estimate of the answer but repeating the process
many times and calculating the average of the independent measurements improves the
precision, and moreover, the errors can be analyzed using principles of statistics.

4

Example 2: Integration of the function sin2 1
x

To give an example of a difficult integration task, consider the function (shown in Fig. 3)

f (x) = sin2 1
x

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

x

f(
x
)

Figure 3: Plot of function sin2(1/x).

The integral of this function is hard to solve analytically, but can be evaluated in a straight-
forward manner using MC integration. There are a number of more sophisticated MC
integration techniques (which will be discussed later), but we use this example here to
illustrate the idea of the simple "hit-or-miss" -algorithm.

The aim is to calculate the integral

I =
∫ b

a
f (x)dx =

∫ b

a
sin2 1

x
dx

We select a = 0 and b = 1. The maximum value of f (x) on this interval is fmax = 1.
Thus the rectangular area where we will randomly drop N points (x,y) is x ∈ [0,1] and
y∈ [0, fmax]. Then we count the number of points for which y < f (x). Denote this number
by N0. An estimate of the value of the integral is now given by

Iest =
N0

N
(b−a) fmax =

N0

N

We obtain the following results:

N = 100000 I = 0.6706900
N = 1000000 I = 0.6725830
N = 10000000 I = 0.6734556

correct result: I = 0.6734568

With ten million points, we get the correct answer to the fifth decimal. The following
Matlab commands

syms x
i = int(sin(1/x)*sin(1/x),0,1)
eval(i)

5

can be used to calculate the definite integral of f (x) from 0 to 1.

Figure 4 shows the absolute error of the estimated answer obtained by MC integration as
a function of total number of points used N.

10
2

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

N

ab
so

lu
te

 e
rr

o
r

error in MC integration
1 / sqrt(N)

Figure 4: Absolute error of the MC estimate.

The error goes as 1/
√

N. This is not at all competitive with algorithms such as the
Romberg method, but in higher dimensions the MC method becomes much more effi-
cient.

2.2 Sample-mean method

Another simple Monte Carlo integration technique is termed as the "sample-mean" method
(also called the "crude" method). In this approach we select N values of x randomly from
the interval [0,1] and then approximate the integral by

I =
∫ 1

0
f (x)dx≈ 1

N

N

∑
i=1

f (xi)

Thus we approximate the integral by the average of N numbers
f (x1), f (x2), . . . , f (xN). Again the estimated answer eventually converges to the correct
result as N→ ∞.

In a general case where the interval is [a,b], the estimate of the integral is given by

Iest = (b−a)〈 f 〉= (b−a)
1
N

N

∑
i=1

f (xi)

The statistical error involved in MC integration is given by

σ≈ σN√
N

where

σ
2
N = 〈 f 2〉−〈 f 〉2 = 1

N

N

∑
i=1

f 2(xi)−

[
1
N

N

∑
i=1

f (xi)

]2

6

Higher-dimensional integrals
Monte Carlo methods become particularly attractive when we consider integration in
higher dimensions. For example,

I =
∫ 1

0

∫ 1

0

∫ 1

0
f (x,y,z)dx dy dz≈ 1

N

N

∑
i=1

f (xi,yi,zi)

where (xi,yi,zi) is a random sequence of points in the unit cube x,y,z ∈ [0,1]. In total, we
need 3N random numbers in order to generate the N random points.

An integral over an arbitrary integration area is obtained from

I =
∫ a2

a1

∫ b2

b1

∫ c2

c1

f (x,y,z)dx dy dz

=
∫ a2

a1

[∫ b2

b1

(∫ c2

c1

f (x,y,z)dx
)

dy
]

dz

≈ (a2−a1)(b2−b1)(c2− c1)
1
N

N

∑
i=1

f (xi,yi,zi)

In general, the sample-mean method is given by

I =
∫

A
f ≈ (measure of A)× (average of f over n random points in A)

Errors
In standard numerical integration, the error decreases as n−a for d = 1 (one-dimensional
integral); e.g. the trapezoid rule has n−2. In d dimensions, the error decreases as n−a/d .
(Here n denotes the total number of subintervals; i.e. the number of subintervals per
dimension is n1/d).

The error in MC integration decreases always as N−1/2.

The computational cost is relative to the total number of subintervals n or the total number
of points N. From this we can deduce the following:

MC integration is more efficient for d > 2a.

7

Example 1: Two-dimensional integral

Consider the integral of f (x,y) = xye−x2y over the square x,y ∈ [0,1].

Using the MC sample mean method, the value of this integral is estimated by generating
N points randomly in the square and calculating the average of f (x,y) over these points.
Thus

IMC =
1
N

N

∑
i=1

f (xi,yi)

Here the area factor is A = 1.

The exact value of the integral is

I =
∫ 1

0

∫ 1

0
xye−x2ydxdy =

1
2e
≈ 0.18393972

Figure 5 below shows the absolute error |IMC− I|.

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

N

ab
so

lu
te

 e
rr

o
r

MC sample mean
1/sqrt(N)

Figure 5: Absolute error of MC estimate.

The error decreases as 1/
√

N as expected from theory, but notice that there is uncertainty
associated with each estimate (the line is not straight). This is due to the fact that we
are using random numbers to calculate the estimates. If we use a sequence of N random
numbers and then repeat the calculation with another sequence of N random numbers,
we get two different answers. The distribution of answers will become narrower as we
increase N and the sequence will eventually converge to the correct answer.

The error in a Monte Carlo calculation is fundamentally different from that in the other
methods of integration. For example, consider the trapezoid rule. In this case, the er-
ror is due to the linear approximation that is made in each subinterval. By making the
subintervals smaller, the fit is made better and the error decreases.

As an example, the Figure 6 shows the error when the trapezoid rule is applied in the
one-dimensional case. The error decreases as n−2 and there are no fluctuations when the
uniform spacing is used in all calculations.

8

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

1.5

2

2.5
x 10

−3

1/n
2

ab
so

lu
te

 e
rr

o
r

1D trapezoid rule

Figure 6: Absolute error of trapezoidal estimate.

Example 2: Computing volumes
The volume of a complicated region in three-dimensional space can be computed by a
Monte Carlo technique. Taking a relatively simple case as an example, consider the vol-
ume of the region where points satisfy the condition

0≤ x≤ 1 0≤ y≤ 1 0≤ z≤ 1
x2 + siny≤ z
x− z+ ey ≤ 1

The first line defines a cube of volume 1. The two other inequalities define a volume
which is a subset of the cube. We can therefore apply the "hit-or-miss" method by gener-
ating N points inside the cube and determining how many of those points satisfy the two
last inequalities (N0). Then an estimate of the desired volume is given by N0/N.

In the following segment of C code, the estimate of the volume is obtained by taking m
independent calculations of the value (where in each N random points are dropped in the
square). An estimate of the precision is given by variance

σ
2
N = 〈V 2

N〉−〈VN〉2

where N is fixed and V denotes an estimate of the volume.

9

/* Loop over independent calculations */
for(j=0; j<m; j++) {

n_0 = 0; /* Points in given volume */

/* Throw n_tot points within the unit cube */
for(i=0; i<n_tot; i++) {

x = random_generator();
y = random_generator();
z = random_generator();

/* Determine if inside the volume */
if(f1(x,y) <= z && f2(x,y,z) <= 1.0) n_0++;

}

/* Calculate the ratio n_0 / n_tot */
ratio = (double)n_0/(double)n_tot;

/* Update averages */
vol += ratio;
vol2 += ratio*ratio;

}

vol /= (double)m;
vol2 /= (double)m;

std = vol2 - vol*vol;

Figure 7 shows the estimated volume (the average volume obtained from m = 20 inde-
pendent calculations) as a function of N (the number of random points in the square per
independent measurement).

10
3

10
4

10
5

10
6

0.134

0.135

0.136

0.137

0.138

0.139

0.14

0.141

0.142

N

v
o

lu
m

e

MC estimate

Figure 7: Estimated volume as a function of N.

10

The variance is shown in Fig. 8.

10
3

10
4

10
5

10
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 10
−4

N

s
ta

n
d

a
rd

 d
e
v

ia
ti

o
n

std of MC estimate

Figure 8: Variance of the estimated volume.

3 Monte Carlo integration - intelligent methods

3.1 Importance sampling

The accuracy of the Monte Carlo integration technique can be improved if we have some
a priori knowledge about the integrand. In particular, if we can identify those regions of
the function that have the greatest impact on the integral, then we can ensure that those
regions receive the majority of random points. This means that we choose the points
according to their anticipated importance to the value of the integral and then weight the
contribution of each point by the inverse of the probability by which it was chosen.

In practice, we introduce a positive normalized weight function w(x) for which∫ b

a
w(x)dx = 1

and then rewrite the integral as

I =
∫ b

a

[
f (x)
w(x)

]
w(x)dx

The integral is evaluated by generating random numbers according to the weight function
w(x) (which is a probability distribution function). Either the analytic transformation of
probability densities or the rejection method can be used for generating random numbers
which follow the distribution w(x).

Using importance sampling, the estimate for the integral is given by

Iest =
1
N

N

∑
i=1

f (xi)

w(xi)

where the points xi are generated randomly according to the distribution w(x). Note that
the function w(x) must be normalized according to the given condition so that all the
numbers xi are in [a,b].

In general, w(x) should be chosen to mimic the form of f (x) as closely as possible in
order to make f (x)/w(x) slowly varying.

11

Example
Let us consider calculating the integral of f (x) = x10−1 between 1 and 2 using both the
sample mean method and importance sampling. The following figure shows the graph of
f (x) in the integration area:

1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

1200

x

f(x)

f(x) = x
10

 − 1

We notice that most of the contribution to the integral comes from the area near x = 2,
thus the importance sampling method is expected to improve the accuracy of the result
compared to simple sampling.

We begin by choosing a weight function w(x) which is similar to f (x). In order to make
analytic transformation of probability densities easy, we choose the following form

w(x) =Cx10

where C is a constant which is determined by the normalization condition:∫ b

a
w(x)dx = 1 ⇒

∫ 2

1
Cx10dx = 1

⇒ C =
11

211−1
≈ 0.0054

The cumulative distribution function F(x) is given by

F(x) =
∫ x

a
w(x)dx =

11
211−1

∫ x

1
x10dx =

x11−1
211−1

= y

The formula for the transformation between probability densities gives

x = F−1(y) = [(211−1)y+1]1/11

where the numbers y are uniformly distributed in [0,1].

Figure 9 shows how 1000 random numbers xi are distributed in [1,2]. This is what we
wanted: the area near x = 2 is clearly favored.

We are now ready to compute the estimate for the integral by calculating the average of
f (x)/w(x) over randomly distributed points xi which follow w(x):

Iest =
1
N

N

∑
i=1

f (xi)

w(xi)

12

1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

value of random number

in
d

e
x

Distribution of random points according to w(x)

Figure 9: Distribution of random points.

We obtain the following results:

SAMPLE MEAN METHOD:
N I error
1000 197.78778405 12.69687496
10000 183.23575316 1.85515593
100000 184.46495114 0.62595795
1000000 185.48523664 0.39432755
10000000 184.90758678 0.18332232

IMPORTANCE SAMPLING:
N I error
1000 185.14836846 0.05745937
10000 185.12627991 0.03537082
100000 185.08113864 0.00977046
1000000 185.09466645 0.00375735
10000000 185.08989139 0.00101771

The convergence is much faster when importance sampling is used. Figure 10 shows the
absolute error as a function of N (number of random points) on a logarithmic scale.

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

N

a
b
s
o
lu

te
 e

rr
o
r

Absolute error of integral on a logarithmic scale

sample mean
importance sampling

Figure 10: Absolute error.

13

3.2 Control variate method

As another example of a more "intelligent" Monte Carlo technique, we discuss the so-
called control variate method. In this method, also known as "variate reduction", we use
the fact that the regular MC integration (e.g. the sample mean method) works well if the
function does not vary much over the area of the integral. Since most functions are not
very flat, improved methods are needed.

We already discussed the importance sampling method where the idea was to use nonuni-
formly distributed points which mostly fall into regions that make the largest contribution
to the integral. In the control variate method, we try to replace the integral over the origi-
nal function f (x) by an integral over a slowly-varying function.

This can be done as follows,

I =
∫ b

a
f (x)dx =

∫ b

a
[f (x)−g(x)]dx+

∫ b

a
g(x)dx

=
∫ b

a
[f (x)−g(x)]dx+ I0

where g(x) is some function relatively similar to f (x) so that f (x)−g(x) is slowly varying
in [a,b], and the integral I0 of g(x) can be calculated easily.

An improved estimate of the original integral can now be computed from

Iest =
1
N

N

∑
i=0

[f (xi)−g(xi)]+ I0

Example

The task is to estimate the value of the integral of f (x) = e−x2
from 0 to 1. By looking at

the graph of f (x), we note that the function g(x) =−0.6x2+1 is similar to f in the range
0≤ x≤ 1. Thus we will use this function in the control variate method.

The following figure shows the graphs of the functions f (x) and g(x):

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x
)

f(x) = exp(−x
2
)

g(x) = −0.6x
2
+1

14

The integral of g(x) is given by

I0 =
∫ 1

0
g(x)dx =

∫ 1

0
(−0.6x2 +1)dx =

4
5

An estimate of the original integral is obtained from

Iest =
1
N

N

∑
i=0

[f (xi)−g(xi)]+ I0

where the points xi are uniformly distributed in the integration area
(in [0,1]).

Figure 11 shows the absolute error of the estimate as a function of N for the regular sample
mean method and control variate method.

10
3

10
4

10
5

10
6

10
7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

a
b
s
o
lu

te
 e

rr
o
r

sample mean
control variate

Figure 11: Absolute error of the MC estimate.

The control variate method gives a clear improvement.

15

4 Monte Carlo simulation

We will now illustrate another type of application of the Monte Carlo method - simula-
tion. We begin here by simple examples - a description of more advanced techniques is
given in the next chapter.

4.1 Buffon’s needle problem

The next example is a very old problem known as the Buffon’s needle problem. Imagine
that a needle of unit length is dropped between two parallel lines that are 1 unit apart.
What is the probability that the needle intersects one of the lines?

1_

2
sin v

u

v

Assume that the center of the needle lands at a random point between the two lines.
Denote the distance from the nearest line by u. The angular orientation of the needle is
another random variable. Denote the angle measured from the axis parallel to the two
lines by v. Now we can say that the needle intersects the two lines if u≤ 1

2 sinv.

In practice, we select u from a uniform random distribution on the interval [0,1/2] and v
from a uniform random distribution on the interval [0,π/2]. We perform the experiment
N times and determine how many times 2u ≤ sinv. Thus we can use a random variable
w = 2u which is distributed uniformly in [0,1].

16

The Buffon’s needle problem is implemented in the following C code:

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define PI 3.141592654

/* Combination RNG in a separate file */
void init_random_generator(long iseed);
double random_generator();

int main(void)
{

long int iseed=27489;
int i, n, m=0;
double w, v, prob;

/* Initialize random number generator */
init_random_generator(iseed);

n = 1000000; /* Number of throws */

/* Throw n needles */
for(i=1; i<=n; i++) {

w = random_generator();
v = 0.5*PI*random_generator();

/* Check if needle touches a line */
if(w <= sin(v)) m++;

/* Output results every 1000 throws */
if(i%100000==0)

printf("%d %lf %lf\n",
i,(double)m/(double)i,2.0/PI);

}
}

17

The following figure shows the probability calculated by the MC simulation as a function
of N. The horizontal line is the correct answer.

10
3

10
4

10
5

10
6

0.63

0.632

0.634

0.636

0.638

0.64

N

e
s
ti
m

a
te

 o
f
p
ro

b
a
b
ili

ty

MC estimate
correct answer

At first the fluctuations are large but the result converges toward the correct answer as
N becomes larger. If the correct result was not known, we could analyze the errors by
doing multiple independent runs for a given number N. The subject of statistical errors is
discussed in more detail shortly.

4.2 Game of cards

In this example, we want to simulate the game of poker and do an experiment to estimate
the probability of getting three of a kind. We randomly draw a hand of five cards and
repeat this N times. From these N hands we calculate the number of those hands, M,
which contain three of a kind.

In order to implement this experiment, we need arrays for the card pack (containing 52
cards, numbered from 1 to 13, no jokers) and the hand (five cards). It is also helpful to
use an extra array which indicates whether a given card has been drawn already (the hand
cannot contain the same card twice). Then for each hand, we have to go through the cards
and check if three of the five cards have the same value.

Typical hands from the output:

9 11 11 9 4
12 13 5 4 8
6 7 11 5 9
7 1 3 5 10
9 3 2 2 7
7 7 8 5 11
8 11 3 12 8
11 7 12 13 12
9 1 11 7 13
9 2 5 4 4
7 2 2 8 3
2 7 7 12 11

Running the code and dealing 5000 hands, we get m = 121 hands which contain three of
a kind. This gives an estimate of 0.024 for the probability of getting three of a kind. The
correct answer is 0.029 (within three decimals).

18

The following is one possible implementation of the program:

int main(void)
{

long int iseed=27489;
int i, j, k, x, n, m=0;
int pack[52], drawn[52], hand[5], num;

/* Initialize random number generator */
init_random_generator(iseed);

/* Set the values of the cards */
j=1;
for(i=0; i<52; i++) {

pack[i]=j; /* value = 1-13 */
j++;
if(j==14) j=1;

}

n = 5000; /* Number of hands */

/* Deal n hands */
for(i=0; i<n; i++) {

/* Initilize help pack */
for(j=0; j<52; j++) drawn[j]=0;

/* Draw five cards */
for(j=0; j<5; j++) {

/* Uniform random number in [0,51]*/
x = 52*random_generator();
while(drawn[x]==1) x = 52*random_generator();
hand[j] = pack[x]; drawn[x]=1;

}

/* Look for a three of a kind */
for(j=0; j<3; j++) {

num = 1;
for(k=j+1; k<5; k++)

if(hand[j] == hand[k]) num++;
if(num>=3) { m++; break; }

}
}
fprintf(stdout,"\n n=%d m=%d p(3 of kind) = %10.8lf\n",

n,m,(double)m/(double)n);
}

19

4.3 Calculation of errors

Statistical errors are inherent to the Monte Carlo method since it is a stochastic method
which utilizes random numbers. For this reason, it is extremely important to have the
proper tools for analyzing the errors. Otherwise we cannot say much about the quality of
an obtained answer.

Statistical errors arise from random changes in the system from one measurement to an-
other. They can be estimated by taking many independent measurements of the quantity
of interest and calculating the spread of the values. We can estimate the true value by
taking the mean of several independent measurements, and the error on that estimate is
simply the error on the mean.

Denote the quantity of interest by A. A single Monte Carlo run produces a value Ai,
which is considered as the result of a single ’measurement’. Taking m such independent
measurements, we can calculate the mean of the measured values from

Ā =
1
m

m

∑
i=1

Ai

This is the estimate of the true value 〈A〉. The standard deviation, or error, of this estimate
is σ= σp/

√
m, where σ2

p = 〈A2〉−〈A〉2 is the inherent standard deviation or error. Denote
deviation δAi = Ai− Ā. Trivially, ¯δAi = 0, 〈δA〉 = 0. Hence, ¯δA2 = 1/m∑

m
i=1(δAi)

2 =

Ā2− (Ā)2.

〈δA2〉= σ2
p− error in the estimate = σ2

p−σ2
p/m. The estimate of the standard deviation

on the mean of the m independent measurements is hence given by

σ =
σp√

m
==

√√√√√ 1
m

m

∑
i=1

(Ai−〈A〉)2

m−1
=

√
1

m−1
(〈A2〉−〈A〉2)

This an estimate of the error.

The above expression for error is based on the assumption that the m measurements are
statistically independent. This is valid in the case of simple sampling, but in more ad-
vanced MC techniques, successive samples are often correlated which means that the
above expression underestimates the error.

20

4.4 Simulation of radioactive decay

One of the simplest examples of a physical process for which the Monte Carlo method
can be applied is the study of radioactive decay. Here we begin with a sample of N nuclei
which decay at a rate λ s−1. The physics of the situation specifies that the rate of decay is
given by

dN
dt

=−λN

where the nuclei which decay during the time dt can be chosen randomly. Note that this
is an example of a physical process which is random by nature. The Monte Carlo method
is especially well suited for studies of such processes.

The time dependence of the number of undecayed nuclei specifies that the rate of decay
is given by

N = N0e−λN

where N0 is the initial number of nuclei and λ is related to the ’half-life’ of the system.

In the simplest approach, the positions of the nuclei play no role and only the number of
undecayed nuclei is monitored. Time is divided into discrete intervals, and each unde-
cayed nucleus is tested for decay. Time is then incremented by one unit and the process is
repeated so that the number of undecayed nuclei can be determined as a function of time.

The time discretization must be done intelligently so that a reasonable number of decays
occur in each time step. Otherwise the simulation requires too much cpu time to be
effective. On the other hand, if the time step is chosen to be too large, then time resolution
is lost because too many decays occur during each time step.

The entire process can be repeated many times to obtain a series of independent ’mea-
surements’ and the mean value of N as well as an error estimate may be determined for
each value of time. Note that in this case the measurements are uncorrelated since we
begin a new simulation with a different random number sequence each time.

The extension of this approach to multiple decay paths is straightforward.

Example
Given a sample of 10000 radioactive nuclei each of which decays at rate p per second,
what is the half-life of the sample if p = 0.2?

The most accurate way to solve this problem using the Monte Carlo approach, is to take
many such samples and simply determine the time which it takes for each sample to decay
to half of its original size. The suitable length of the time step dt can be obtained by doing
a few short test runs with different values of the time step. A suitable value is dt = 0.01
s. The decay probability per time step is then p = 0.002 s−1. In each individual mea-
surement, the half-time is estimated by the elapsed time when the number of undecayed
nuclei N is less or equal to N0/2.

21

The following segment of C code performs the m measurements:

N0 = 10000; /* Size of sample */
dt = 0.01; /* time step = 0.1 sec */
p = 0.002; /* Decay probability per time step */
m = 100; /* number of independent measurements */

/* Loop over independent measurements */
for(k=0; k<m; k++) {

/* Begin a new simulation */
N=N0; time = dt;

/* Loop over time steps*/
for(step=0; step<MAXSTEPS; step++) {

/* Number of undecayed nuclei */
n = N;
/* Loop over undecayed nuclei */
for(i=0; i<n; i++) {
/* Test for decay */
r = random_generator();
if(r < p) N--; /* Decay event */

}
/* Check for half-life */
if(2*N <= N0) break;
/* Increment time */
time = time+dt;

}

/* Update averages */
thalf += time;
thalf2 += time*time;

}

22

After the averages 〈t1/2〉 and 〈t2
1/2〉 have been calculated from the m measurements, we

can analyze the error on the mean value by calculating the standard deviation:

σ =

√
1

m−1
(〈t2

1/2〉−〈t1/2〉2)

This is done in the following segment of code:

/* Calculate the final estimate */
thalf = thalf/(double)m;
thalf2 = thalf2/(double)m;

/* Standard deviation (error) */
std = sqrt((thalf2-thalf*thalf)/(double)(m-1));

Typical values of N obtained from 5 independent measurements are:

k=0 N0 = 10000 N = 4999 time = 3.49000000
k=1 N0 = 10000 N = 4999 time = 3.41000000
k=2 N0 = 10000 N = 4986 time = 3.54000000
k=3 N0 = 10000 N = 4988 time = 3.41000000
k=4 N0 = 10000 N = 4996 time = 3.52000000

This gives us the following final estimates:

m=5 thalf = 3.47400000 error = 0.02731300

The accuracy can be increased by taking more samples:

m=100 thalf = 3.46630000 error = 0.00485685

Thus the MC simulation with m = 100 gives the answer
t1/2,MC = 3.466±0.005.

The result is within the given error limits of the correct answer
which is is t1/2 = ln0.5/(−0.2)≈ 3.4657359.

23

