Physics 112

Chapter 16 Electric Potential Energy and Capacitance

You may ignore

* 16.8, 16.9, 16.10

Potential Energy

- The concept of potential energy is useful in the study of electricity.
- A potential energy function can be defined corresponding to the electric force.
- Electric potential can also be defined.
- The concept of potential relates to circuits.

Work Energy Theorem

* The change in the kinetic energy of an object equals the work done on the object
* For a conservative force (which the electric force is) the work done is - \triangle PE

$$
W_{\text {done }}=\Delta K E=-\Delta P E=P E_{i}-P E_{f}
$$

* Let's use gravity as an example
* Positive work denotes an increase in kinetic energy, negative work, a decrease
* Does an object gain or loose kinetic energy when dropped/ raised? The Electric potential works the same way Calmost. two signs)

You either

* Put energy in to an object to move it against a potential or get energy out of the potential
* Think raising or dropping a weight, in which case do you have to do work against gravity?

The total energy

* In the case of conservative potentials is conserved or

$$
E_{i}=E_{f} \rightarrow \Delta K E+\Delta P E=0
$$

Electric Potential Energy

- The Coulomb force is a conservative force.
- It is possible to define an electrical potential energy function with this force.
- Work done by a conservative force is equal to the negative of the change in potential energy.

Work and Potential Energy

- There is a uniform field between the two plates.
- As the charge moves from A to B, work is done on it.
- $W_{A B}=F_{x} \Delta x=q E_{x}\left(x_{f}-x_{i}\right)$
- $\Delta P E=-W_{A B}=-q E_{x} \Delta x$
- Only for a uniform field for a particle that undergoes a displacement along a given axis

- SI unit of energy: J

Let us take stock Regions of high to low potential energy point in the direction a positively charged particle would move Drop a proton in a region of high potential and it moves towards regions of lower potential

* Positively charged particles move from high to low potential energy thus gaining kinetic energy from the electric field
* Negatively charged particles move from regions of low potential to high potential
* If this is reversed then work must be done AGAINST the potential
* If you want to move a positively charged object from low to high you must do work against the potential therefore the particle slows down
* If you want to move a positively charged object from low to high you must do work against the potential therefore the particle slows down
* If you want to move a negatively charged object from high to low potential work must again be done meaning the particle slows down

Electric Potential

* Not potential energy, but potential energy per unit charge, $\Delta V=\Delta P E / q$

Potential Difference

- The electric potential difference ΔV between points A and B is defined as the change in the potential energy (final value minus initial value) of a charge q moved from A to B divided by the size of the charge.
$-\Delta V=V_{B}-V_{A}=\Delta P E / q$
- Potential difference is not the same as potential energy.

Potential Difference, Cont.

- Another way to relate the energy and the potential difference: $\Delta P E=q \Delta V$
- Both electric potential energy and potential difference are scalar quantities.
- Units of potential difference
$-\mathrm{V}=\mathrm{J} / \mathrm{C}$
- A special case occurs when there is a uniform electric field.
$-\Delta V=-E_{x} \Delta x$
- Gives more information about units: $\mathrm{N} / \mathrm{C}=\mathrm{V} / \mathrm{m}$

The Electron Volt

- The electron volt (eV) is defined as the kinetic energy that an electron gains when accelerated through a potential difference of 1 V .
- Electrons in normal atoms have energies of 10 ' s of eV.
- Excited electrons have energies of 1000 's of eV.
- High energy gamma rays have energies of millions of eV.
- $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

Potential Energy Compared to Potential

- Electric potential is characteristic of the field only.
- Independent of any test charge that may be placed in the field
- Electric potential energy is characteristic of the charge-field system.
- Due to an interaction between the field and the charge placed in the field

Electric Potential and Charge Movements

- When released from rest, positive charges accelerate spontaneously from regions of high potential to low potential.
- When released from rest, negative charges will accelerated from regions of low potential toward region of high potential.
- Work must be done on a negative charges to make them go in the direction of lower electric potential.

Electric Potential of a Point Charge

- The point of zero electric potential is taken to be at an infinite distance from the charge.
- The potential created by a point charge q at any distance r from the charge is

$$
\mathrm{V}=\mathrm{k}_{\mathrm{e}} \frac{\mathrm{q}}{\mathrm{r}}
$$

Electric Field and Electric Potential Depend on Distance

- The electric field is proportional to $1 / r^{2}$
- The electric potential is proportional to $1 / r$

Electric Potential of Multiple Point Charges

- Superposition principle applies
- The total electric potential at some point P due to several point charges is the algebraic sum of the electric potentials due to the individual charges.
- The algebraic sum is used because potentials are scalar quantities.

A proton $\left(+1.6 \times 10^{-19} \mathrm{C}\right)$ moves 10 cm on a path in the direction of a uniform electric field of strength $3.0 \mathrm{~N} / \mathrm{C}$. How much work is done on the proton by the electrical field?
a. $4.8 \times 10^{-20} \mathrm{~J}$
b. $-4.8 \times 10^{-20} \mathrm{~J}$
c. $1.6 \times 10^{-20} \mathrm{~J}$
d.zero

A 9.0-V battery is connected between two parallel metal plates 4.0 mm apart. What is the magnitude of the electric field between the plates?
a. $2.3 \times 10^{3} \mathrm{~N} / \mathrm{C}$
b. $9.0 \mathrm{~N} / \mathrm{C}$
c. 2.3 N/C
d. $0.75 \times 10^{-6} \mathrm{~N} / \mathrm{C}$

An electron in a cathode ray tube is accelerated through a potential difference of 5.0 kV . What kinetic energy does the electron gain in the process? $\left(e=1.6 \times 10^{-19} \mathrm{C}\right)$
a. $1.6 \times 10^{-16} \mathrm{~J}$
b. $8.0 \times 10^{-16} \mathrm{~J}$
c. $1.6 \times 10^{-22} \mathrm{~J}$
d. $8.0 \times 10^{22} \mathrm{~J}$

Two point charges of values +3.4 and $+6.6 \mu \mathrm{C}$, respectively, are separated by 0.20 m . What is the potential energy of this 2 -charge system? $\left(k_{e}=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)$
a. +0.34 J
b. -0.75 J
c. +1.0 J
d. -3.4 J

Examples

* Ch 16 1,5,6

Electrical Potential Energy of Two Charges

- V_{1} is the electric potential due to q_{1} at some point P
- The work required to bring q_{2} from infinity to P without acceleration is $\mathrm{q}_{2} \mathrm{~V}_{1}$
- This work is equal to the potential energy of the two particle system

$$
P E=q_{2} V_{1}=k_{e} \frac{q_{1} q_{2}}{r}
$$

Section 16.2

${ }^{q}$

Notes About Electric Potential Energy of Two Charges

- If the charges have the same sign, PE is positive.
- Positive work must be done to force the two charges near one another.
- The like charges would repel.
- If the charges have opposite signs, PE is negative.
- The force would be attractive.
- Work must be done to hold back the unlike charges from accelerating as they are brought close together.

Problem Solving with Electric Potential (Point Charges)

- Draw a diagram of all charges.
- Note the point of interest.
- Calculate the distance from each charge to the point of interest.
- Use the basic equation $V=k_{e} q / r$
- Include the sign
- The potential is positive if the charge is positive and negative if the charge is negative.

Potentials and Charged Conductors

- Since $W=-q\left(V_{B}-V_{A}\right)$, no net work is required to move a charge between two points that are at the same electric potential.
$-\mathrm{W}=0$ when $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}$
- All points on the surface of a charged conductor in electrostatic equilibrium are at the same potential.
- Therefore, the electric potential is constant everywhere on the surface of a charged conductor in electrostatic equilibrium.

Problem Solving with Electric Potential, Cont.

- Use the superposition principle when you have multiple charges.
- Take the algebraic sum
- Remember that potential is a scalar quantity.
- So no components to worry about

Conductors in Equilibrium

- The conductor has an excess of positive charge.
- All of the charge resides at the surface.
- $\mathrm{E}=0$ inside the conductor.
- The electric field just outside the conductor is perpendicular to the surface.
- The potential is a constant everywhere on the surface of the conductor.
- The potential everywhere inside the conductor is constant and equal to its value at the surface.

Capacitance

- A capacitor is a device used in a variety of electric circuits.
- The capacitance, C , of a capacitor is defined as the ratio of the magnitude of the charge on either conductor (plate) to the magnitude of the potential difference between the conductors (plates).

Capacitance, Cont.

- $\mathrm{C} \equiv \frac{\mathrm{Q}}{\Delta \mathrm{V}}$
- Units: Farad (F)
$-1 F=1 C / V$
- A Farad is very large
- Often will see $\mu \mathrm{F}$ or pF
- $\Delta \mathrm{V}$ is the potential difference across a circuit element or device.
- V represents the actual potential due to a given charge at a given location.

Parallel-Plate Capacitor, Example

- The capacitor consists of two parallel plates.
- Each has area A.
- They are separated by a distance d.
- The plates carry equal and opposite charges.
- When connected to the battery, charge is pulled off one plate and transferred to the other plate.
- The transfer stops when $\Delta \mathrm{V}_{\text {cap }}=\Delta \mathrm{V}_{\text {battery }}$

Parallel-Plate Capacitor

Electric Field in a Parallel-Plate Capacitor

- The capacitance of a device depends on the geometric arrangement of the conductors.
- For a parallel-plate capacitor whose plates are separated by air:

$$
\mathrm{C}=\varepsilon_{\mathrm{o}} \frac{\mathrm{~A}}{\mathrm{~d}}
$$

- The electric field between the plates is uniform.
- Near the center
- Nonuniform near the edges
- The field may be taken as constant throughout the region between the plates.

Application - Camera Flash

- The flash attachment on a camera uses a capacitor.
- A battery is used to charge the capacitor.
- The energy stored in the capacitor is released when the button is pushed to take a picture.
- The charge is delivered very quickly, illuminating the subject when more light is needed.

Application - Computers

- Computers use capacitors in many ways.
- Some keyboards use capacitors at the bases of the keys.
- When the key is pressed, the capacitor spacing decreases and the capacitance increases.
- The key is recognized by the change in capacitance.

Section 16.7

Key Concepts

* For potential and potential energy the regions from high to low point in the direction a positively charged particle would go
* Potential obeys the principle of superposition
* Keep your signs when doing energy and potential problems

Key Equations

For only conservative forces $-\Delta K E+\Delta P E_{\text {cons }}=0$

$$
W_{\text {done }}=\Delta K E=-\Delta P E_{\text {cons }} \text { Joules }
$$

$$
W_{\text {electric }}=\Delta K E=-\Delta P E_{\text {electric }}=q \vec{E} \Delta X
$$

$$
q \Delta V=\Delta P E
$$

Constant linear field $-|\vec{E} \Delta x|=|\Delta V|$ Volts

Capacitance

$$
\begin{aligned}
& C=\frac{q}{\Delta V} \\
& C=\epsilon_{0} \frac{A}{d}
\end{aligned}
$$

Potential due to a point charge $\quad V_{\text {point }}=\frac{k q}{r}$

