

Some Properties of Nuclei

- All nuclei are composed of protons and neutrons
 - Exception is ordinary hydrogen with just a proton
- The atomic number, Z, equals the number of protons in the nucleus
- The neutron number, N, is the number of neutrons in the nucleus
- The mass number, A, is the number of nucleons in the nucleus
 - A = Z + N
 - Nucleon is a generic term used to refer to either a proton or a neutron
 - The mass number is not the same as the mass

Symbolism Symbol: A 7 X

- X is the chemical symbol of the element
- Example:

 $^{27}_{13}$ AI

- Mass number is 27
 - Atomic number is 13
 - Contains 13 protons Contains 14 (27 – 13) neutrons
- The Z may be omitted since the element can be used to determine Z

More Properties

- The nuclei of all atoms of a particular element must contain the same number of protons
- They may contain varying numbers of neutrons
 - Isotopes of an element have the same Z but differing N and A values
 - Example: ${}^{11}_{6}C {}^{12}_{6}C {}^{13}_{6}C {}^{14}_{6}C$

- The proton has a single positive charge, +e
- The electron has a single negative charge, -e
- The neutron has no charge
 - Makes it difficult to detect
- e = 1.602 177 33 x 10⁻¹⁹ C

Mass

- It is convenient to use *unified mass* units, u, to express masses
 - 1 u = 1.660 559 x 10⁻²⁷ kg
 - Based on definition that the mass of one atom of C-12 is exactly 12 u
- Mass can also be expressed in MeV/c²
 - From $E_R = m c^2$
 - 1 u = 931.494 MeV/c²

Summary of Masses

TABLE 29.1

Masses of the Proton, Neutron, and Electron in Various Units

Particle	Mass		
	kg	u	MeV/c^2
Proton	$1.672~6 imes 10^{-27}$	$1.007\ 276$	938.28
Neutron	$1.675~0 imes 10^{-27}$	$1.008\ 665$	939.57
Electron	$9.109 imes 10^{-31}$	$5.486 imes10^{-4}$	0.511

© Brooks/Cole, Cengage Learning

The Size of the nucleus

* is $r_{nucleus} = r_0 \times A^{1/3}$

* where 1 fm = 10⁻¹⁵ meters

Binding Energy

- * The combined mass of the nucleus is less than the mass of the nucleons when they are separate
- * The difference in the combined and separate masses gives the binding energy
- * Think about this 1+1 does not equal two in nuclear physics

* The Deuteron 1 proton and 1 neutron

* Together Mdeuteron = 2.014102 u

* individually Mindividual = 1.007825 u + 1.008665 u

***** ∆m = .002388 u

***** $E = \Delta mc^2$ or 2.224 MeV

Binding energy per nucleon

* Calculate the binding energy then divide by the number of nucleons

Binding Energy per Nucleon

This has serious ramifications

For now

- * Notice more massive nucleons have less binding energy per nucleon
- * As particles become more massive they become less stable
- * They radioactively decay

Nuclear Stability, cont

- Light nuclei are most stable if N = Z
- Heavy nuclei are most stable when N
 7
 - As the number of protons increase, the Coulomb force increases and so more nucleons are needed to keep the nucleus stable
- No nuclei are stable when Z > 83

@ 2006 Brooks/Cole - Thom

* Large nuclei decay by the emission of a

* gamma ray - photon/radiation

* beta ray - electron or positron

* alpha particle - helium nucleus

Distinguishing Types of Radiation

© 2006 Brooks/Cole - Thomso

- A radioactive beam is directed into a region with a magnetic field
- The gamma particles carry no charge and they are not deflected
- The alpha particles are deflected upward
- The beta particles are deflected downward
 - A positron would be deflected upward

Penetrating Ability of Particles

- Alpha particles
 - Barely penetrate a piece of paper
- Beta particles
 - Can penetrate a few mm of aluminum
- Gamma rays
 - Can penetrate several cm of lead

Vecay Rates

* The number of nuclei as a N(t)function of time is given by N_0 $N(t) = N_0 e^{-\lambda t}$ * lambda is the decay $\frac{1}{2}N_0$ constant $\frac{1}{4}N_{0}$ * The number of decays per second is given by the activity $R = \lambda N$ © 2003 Thomson - Brooks Cole

* The half life of a substance is the amount of time it takes for one half of a radioactive material to radioactively decay $T_{1/2} = .693/\lambda$

* After n half lives there will be $N = N_0(1/2)^n$ left

Units

- The unit of activity, R, is the Curie, Ci
 - 1 Ci = 3.7 x 10¹⁰ decays/second
- The SI unit of activity is the Becquerel, Bq
 - 1 Bq = 1 decay / second
 - Therefore, 1 Ci = 3.7×10^{10} Bq
- The most commonly used units of activity are the mCi and the µCi

Decay – General Rules

- When one element changes into another element, the process is called spontaneous decay or transmutation
- The sum of the mass numbers, A, must be the same on both sides of the equation
- The sum of the atomic numbers, Z, must be the same on both sides of the equation
- Conservation of mass-energy and conservation of momentum must hold

Alpha Decay

- When a nucleus emits an alpha particle it loses two protons and two neutrons
 - N decreases by 2
 - Z decreases by 2
 - A decreases by 4
- Symbolically ${}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y + {}^{4}_{2}He$
 - X is called the *parent nucleus*
 - Y is called the *daughter nucleus*

Beta Decay

- During beta decay, the daughter nucleus has the same number of nucleons as the parent, but the atomic number is changed by one
- Symbolically

 $A_{Z}^{A}X \rightarrow A_{Z+1}^{A}Y + e^{-1}$ $A_{Z}^{A}X \rightarrow A_{Z-1}^{A}Y + e^{+1}$

Beta Decay

- During beta decay, the daughter nucleus has the same number of nucleons as the parent, but the atomic number is changed by one
- Symbolically

$$A_{Z} X \rightarrow A_{Z+1} Y + e^{-}$$
$$A_{Z} X \rightarrow A_{Z-1} Y + e^{+}$$

Beta Decay – Completed

Symbolically

 $A_{Z}^{A}X \rightarrow A_{Z+1}^{A}Y + e^{-} + \overline{\nu}$ $A_{Z}^{A}X \rightarrow A_{Z-1}^{A}Y + e^{+} + \nu$

- ${\scriptstyle \bullet } \ \nu$ is the symbol for the neutrino
- \overline{v} is the symbol for the antineutrino
- To summarize, in beta decay, the following pairs of particles are emitted
 - An electron and an antineutrino
 - A positron and a neutrino

Neutrino

- To account for this "missing" energy, in 1930 Pauli proposed the existence of another particle
- Enrico Fermi later named this particle the neutrino
- Properties of the neutrino
 - Zero electrical charge
 - Mass much smaller than the electron, recent experiments indicate definitely some mass
 - Spin of ½
 - Very weak interaction with matter

Gamma Decay

- Gamma rays are given off when an excited nucleus "falls" to a lower energy state
 - Similar to the process of electron "jumps" to lower energy states and giving off photons
 - The photons are called gamma rays, very high energy relative to light
- The excited nuclear states result from "jumps" made by a proton or neutron
- The excited nuclear states may be the result of violent collision or more likely of an alpha or beta emission

Gamma Decay – Example

- Example of a decay sequence
 - The first decay is a beta emission
 - The second step is a gamma emission ${}^{12}_{5}B \rightarrow {}^{12}_{6}C^* + e^- + \overline{\nu}$ ${}^{12}_{6}C^* \rightarrow {}^{12}_{6}C + \gamma$
 - The C* indicates the Carbon nucleus is in an excited state
 - Gamma emission doesn't change either A or Z

Nuclear Reactions

Nuclear Reactions

- Structure of nuclei can be changed by bombarding them with energetic particles
 - The changes are called *nuclear* reactions
- As with nuclear decays, the atomic numbers and mass numbers must balance on both sides of the equation

*** 4+14=18** ${}_{2}^{4}He + {}_{7}^{14}N \rightarrow ? + {}_{1}^{1}H$

* So ${}^{4}_{2}He + {}^{14}_{7}N \rightarrow {}^{17}_{8}? + {}^{1}_{1}H$

Q Values

Q Values

- Energy must also be conserved in nuclear reactions
- The energy required to balance a nuclear reaction is called the Q value of the reaction
 - An exothermic reaction
 - There is a mass "loss" in the reaction
 - There is a release of energy
 - Q is positive
 - An endothermic reaction
 - There is a "gain" of mass in the reaction
 - Energy is needed, in the form of kinetic energy of the incoming particles
 - Q is negative

Exothermic - energy released by reaction

 $^2_1H+^{14}_7N\rightarrow ^{12}_6C+^4_2He$

* Calculate mass difference between left and right side 16.017176 u -16.002602 u = .014574 u

* E = 13.576 MeV, this is Q, positive energy is released

Endothermic - energy needed

${}^{4}_{2}He + {}^{14}_{7}N \rightarrow {}^{17}_{8}C + {}^{1}_{1}H$ *** 18.005676 u - 18.006958 u = - .001282 u**

* This reaction ends up with less energy

* Not possible unless kinetic energy is used

* Energy USING reaction

Minimum kinetic energy needed

$A + B \rightarrow C + D$

 $KE_{min} = (1 + \frac{m_A}{M_B})|Q|$

Example

Huge ramifications

* If you get energy from a reaction you get to use fusion for energy

* If you need energy for a reaction you use fission for energy