Nuclear Physics

Some Properties of Nuclei

- All nuclei are composed of protons and neutrons
- Exception is ordinary hydrogen with just a proton
- The atomic number, Z, equals the number of protons in the nucleus
- The neutron number, N, is the number of neutrons in the nucleus
- The mass number, A, is the number of nucleons in the nucleus
- $A=Z+N$
- Nucleon is a generic term used to refer to either a proton or a neutron
- The mass number is not the same as the mass

Symbolism

- Symbol: $\begin{gathered}\text { A } \\ Z\end{gathered}$
- X is the chemical symbol of the element
- Example:

27 . Mass number is 27
27 A - Atomic number is 13
13 - Contains 13 protons

- Contains 14 (27-13) neutrons
- The Z may be omitted since the element can be used to determine Z

More Properties

- The nuclei of all atoms of a particular element must contain the same number of protons
- They may contain varying numbers of neutrons
- Isotopes of an element have the same Z but differing N and A values
- Example: ${ }_{6}^{11} C{ }_{6}^{12} C{ }_{6}^{13} C{ }_{6}^{14} C$

Charge

- The proton has a single positive charge, +e
- The electron has a single negative charge, -e
- The neutron has no charge
- Makes it difficult to detect
. $\mathrm{e}=1.60217733 \times 10^{-19} \mathrm{C}$

Mass

- It is convenient to use unified mass units, u, to express masses
- $1 \mathrm{u}=1.660559 \times 10^{-27} \mathrm{~kg}$
- Based on definition that the mass of one atom of $\mathrm{C}-12$ is exactly 12 u
- Mass can also be expressed in MeV/c²
- From $E_{R}=\mathrm{m}^{2}$
- $1 \mathrm{u}=931.494 \mathrm{MeV} / \mathrm{c}^{2}$

Summary of Masses

TABLE 29.1

Masses of the Proton, Neutron, and Electron in Various Units

	Mass		
Particle	$\mathbf{k g}$	\mathbf{u}	$\mathbf{M e V} / \mathbf{c}^{\mathbf{2}}$
Proton	1.6726×10^{-27}	1.007276	938.28
Neutron	1.6750×10^{-27}	1.008665	939.57
Electron	9.109×10^{-31}	5.486×10^{-4}	0.511

© Brooks/Cole, Cengage Learning

The Size of the nucleus

* is $r_{\text {nucleus }}=r_{0} \times A^{1 / 3}$
* $r_{0}=1.2 \mathrm{fm}$
* where $1 \mathrm{fm}=10^{-15}$ meters
* let's do an example

Binding Energy

* The combined mass of the nucleus is less than the mass of the nucleons when they are separate
* The difference in the combined and separate masses gives the binding energy
* Think about this $1+1$ does not equal two in nuclear physics

Example

* The Deuteron 1 proton and 1 neutron
* Together Mdeuteron $=2.014102 \mathrm{u}$
* individually Mindividual $=1.007825 \mathrm{u}+1.008665 \mathrm{v}$
* $\Delta m=.002388 v$
* $E=\Delta m c^{2}$ or 2.224 MeV
* Show

Binding energy per nucleon

* Calculate the binding energy then divide by the number of nucleons

Binding Energy per Nucleon

This has serious ramifications

* What happens when the curve turns over at iron?
* More later

For now

* Notice more massive nucleons have less binding energy per nucleon

* As particles become more massive they become less stable

* They radioactively decay

Nuclear Stability, cont

- Light nuclei are most stable if $\mathrm{N}=\mathrm{Z}$
- Heavy nuclei are most stable when N > Z
- As the number of protons increase, the Coulomb force increases and so more nucleons are needed to keep the nucleus stable
- No nuclei are stable when $Z>83$

Radioactivity

* Large nuclei decay by the emission of a * gamma ray - photon/radiation
* beta ray - electron or positron * alpha particle - helium nucleus

Distinguishing Types of Radiation

- A radioactive beam is directed into a region with a magnetic field
- The gamma particles carry no charge and they are not deflected
- The alpha particles are deflected upward
- The beta particles are deflected downward
- A positron would be deflected upward

Penetrating Ability of Particles

- Alpha particles
- Barely penetrate a piece of paper
- Beta particles
- Can penetrate a few mm of aluminum
- Gamma rays
- Can penetrate several cm of lead

Decay Rates

* The number of nuclei as a function of time is given by

$$
N(t)=N_{0} e^{-\lambda t}
$$

* lambda is the decay constant
* The number of decays per second is given by the activity $R=\lambda N$

Half lifes

* The half life of a substance is the amount of time it takes for one half of a radioactive material to radioactively decay $T_{1 / 2}=.693 / \lambda$
* After \boldsymbol{n} half lives there will be $N=N_{0}(1 / 2)^{n}$ left

Units

- The unit of activity, R , is the Curie, Ci
- $1 \mathrm{Ci}=3.7 \times 10^{10}$ decays/second
- The SI unit of activity is the Becquerel, $B q$
- $1 \mathrm{~Bq}=1$ decay / second
- Therefore, $1 \mathrm{Ci}=3.7 \times 10^{10} \mathrm{~Bq}$
- The most commonly used units of activity are the mCi and the $\mu \mathrm{Ci}$

Let's do an example

Decay - General Rules

- When one element changes into another element, the process is called spontaneous decay or transmutation
- The sum of the mass numbers, A, must be the same on both sides of the equation
- The sum of the atomic numbers, Z, must be the same on both sides of the equation
- Conservation of mass-energy and conservation of momentum must hold

Alpha Decay

- When a nucleus emits an alpha particle it loses two protons and two neutrons
- N decreases by 2
- Z decreases by 2
- A decreases by 4
- Symbolically ${ }_{Z}^{A} \mathrm{X} \rightarrow{ }_{\mathrm{Z}-2}^{\mathrm{A}-4} \mathrm{Y}+{ }_{2}^{4} \mathrm{He}$
- X is called the parent nucleus
- Y is called the daughter nucleus

Beta Decay

- During beta decay, the daughter nucleus has the same number of nucleons as the parent, but the atomic number is changed by one
- Symbolically

$$
\begin{aligned}
& { }_{z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-} \\
& { }_{z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+e^{+}
\end{aligned}
$$

Beta Decay

- During beta decay, the daughter nucleus has the same number of nucleons as the parent, but the atomic number is changed by one
- Symbolically

$$
\begin{aligned}
& { }_{z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-} \\
& { }_{z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+e^{+}
\end{aligned}
$$

Beta Decay - Completed

- Symbolically
${ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}+\bar{v}$
${ }_{z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+e^{+}+v$
- v is the symbol for the neutrino
- \bar{v} is the symbol for the antineutrino
- To summarize, in beta decay, the following pairs of particles are emitted
- An electron and an antineutrino
- A positron and a neutrino

Neutrino

- To account for this "missing" energy, in 1930 Pauli proposed the existence of another particle
- Enrico Fermi later named this particle the neutrino
- Properties of the neutrino
- Zero electrical charge
- Mass much smaller than the electron, recent experiments indicate definitely some mass
- Spin of $1 / 2$
- Very weak interaction with matter

Gamma Decay

- Gamma rays are given off when an excited nucleus "falls" to a lower energy state
- Similar to the process of electron "jumps" to lower energy states and giving off photons
- The photons are called gamma rays, very high energy relative to light
- The excited nuclear states result from "jumps" made by a proton or neutron
- The excited nuclear states may be the result of violent collision or more likely of an alpha or beta emission

Gamma Decay - Example

- Example of a decay sequence
- The first decay is a beta emission
- The second step is a gamma emission

$$
{ }_{5}^{12} \mathrm{~B} \rightarrow{ }_{6}^{12} \mathrm{C}^{*}+\mathrm{e}^{-}+\bar{v}
$$

$$
{ }_{6}^{12} \mathrm{C}^{\star} \rightarrow{ }_{6}^{12} \mathrm{C}+\gamma
$$

- The C* indicates the Carbon nucleus is in an excited state
- Gamma emission doesn't change either A or Z

Let's do an example

Uses of Radioactivity

* Carbon Dating
* Smoke Detectors
* Radon Detection

Nuclear Reactions

Nuclear Reactions

- Structure of nuclei can be changed by bombarding them with energetic particles
- The changes are called nuclear reactions
- As with nuclear decays, the atomic numbers and mass numbers must balance on both sides of the equation

Example

$$
\begin{aligned}
& \text { * } 4+14=18{ }_{2}^{4} \mathrm{He}+{ }_{7}^{14} N \rightarrow ?+{ }_{1}^{1} H \\
& \text { * } 2+7=9 \\
& \text { * So }{ }_{2}^{4} \mathrm{He}+{ }_{7}^{14} N \rightarrow{ }_{8}^{17} ?+{ }_{1}^{1} H \\
& \text { * ? = 0 }
\end{aligned}
$$

Q Values

Q Values

- Energy must also be conserved in nuclear reactions
- The energy required to balance a nuclear reaction is called the Q value of the reaction
- An exothermic reaction
- There is a mass "loss" in the reaction
- There is a release of energy
- Q is positive
- An endothermic reaction
- There is a "gain" of mass in the reaction
- Energy is needed, in the form of kinetic energy of the incoming particles
- Q is negative

Exothermic - energy released by reaction

$$
{ }_{1}^{2} H+{ }_{7}^{14} N \rightarrow{ }_{6}^{12} C+{ }_{2}^{4} H e
$$

* Calculate mass difference between left and right side 16.017176 u $16.002602 v=.014574 v$
* $E=13.576 \mathrm{MeV}$, this is Q, positive energy is released

Endothermic - energy needed

$$
{ }_{2}^{4} H e+{ }_{7}^{14} N \rightarrow{ }_{8}^{17} C+{ }_{1}^{1} H
$$

* $18.005676 u-18.006958 u=-.001282 u$
* Q is - 1.194 MeV
*?
* This reaction ends up with less energy
* Not possible unless kinetic energy is used
* Energy USING reaction

Minimum kinetic energy needed

$$
\begin{gathered}
A+B \rightarrow C+D \\
K E_{\text {min }}=\left(1+\frac{m_{A}}{M_{B}}\right)|Q|
\end{gathered}
$$

Example

Huge ramifications

* If you get energy from a reaction you get to use fusion for energy
* If you need energy for a reaction you use fission for energy

