Reading Question

What is the difference between speed and velocity?

A. Velocity contains both speed and direction
B. Velocity typically has more significant figures
C. Velocity takes into account things like air resistance
D. Velocity is valid for a higher range of values
E. Velocity is simply the scientific name for speed

This lecture

Conservation Laws

Energy
Newton
Forces
Gravity
Orbits
Tides

Orbits again

- Action at a distance? Weird
- Infinite energy or something else?

What is energy?

Conservation Laws

- Quantities that do not change unless acted upon by an external influence
- Linear Momentum
- Angular Momentum (orbitting and spinning)
- Energy

Linear Momentum

Orbital Angular Momentum

Spinning Angular Momentum

Energy

- Kinetic (moving energy)
- Potential (stored energy gravitational, chemical, etc.)
- Radiative (energy carried by light)

Energy of an isolated system is conserved

The totgi energr (kinetic + potential) is the some at all points in the ball's flight

a The ball nas more gravitationel potentia cncegy when it is high up th an when it is eas the ground.

Enargy is consorvad. As tha cloud contracts, graviational potential ericrgy is converted to thermai erergy (ard'scrie of this saergy is convertec to radiation)

nore cravitatanal potentia' everoy
 (andless themai ereagy)

b A clouc of intorstcllar gas can contract duc to its own gavity It
 when it shrinks in size.

Temperature/Heat?

Nuclear Energy

- $E^{2}=p^{2} c^{2}+m^{2} c^{4}$
- What does the conversion of matter into energy mean?
- Fusion/Fission
- squish/smash

Fusion

The Proton-Proton

Chain is the principal set of reactions for solar-type stars to transform hydrogen to helium

But what kind of

energy is made?

- Kinetic and radiative

- Splitting but energy is

Fission

 still radiative andkinetic

| Item | Energy (joules) |
| :--- | ---: | :--- |
| Energy of sunlight at Earth $\left(\right.$ per m^{2}
 per second $)$ | $1.3^{*} 10^{3}$ |
| Energy from metabolism of a candy bar | $1^{*} 10^{6}$ |
| Energy needed to walk for 1 hour | $1^{*} 10^{6}$ |
| Kinetic energy of a car going $60 \mathrm{mi} / \mathrm{hr}$ | $1^{*} 10^{6}$ |
| Daily food energy need of average adult
 Energy released by burning 1 liter of oil | $11^{*} 10^{7} 10^{7}$ |
| Thermal energy of parked car | $1^{*} 10^{8}$ |
| Energy released by fission of 1 kilogram
 of uranium-235 | $5.6^{*} 10^{13}$ |
| Energy released by fusion of hydrogen in
 1 liter of water
 Energy released by 1 -megaton $\mathrm{H}-$ bomb | $7^{*} 10^{13}$ |
| Energy released by major earthquake
 (magnitude 8.0$)$ | $2.5^{*} 10^{15}$ |
| Annual U.S. energy consumption | 10^{20} |
| Annual energy generation of Sun
 Energy released by a supernova | $10^{44}-10^{46}$ |

This week: How did Newton change our view of the Universe?

- Motion
- Stating the obvious, but doing it scientifically
- Including, how to launch yourself into space
- Gravity
- It's not just a good idea, it's the Law

I derive from the celestial

 phenomena the forces of gravity with which bodies tend to the Sun and the several planets. Then from these forces, by other propositions which are also mathematical, I deduce the motions of the planets, the comets, the Moon and the sea.
--Isaac Newton

"If I have seen fars, it is because I have stood on the shoulders of giants" - the giant he meant was Galileo

Newton's 3 Laws of Motion

1. An object moves at constant velocity if there is no net force acting on it
2. When a force, F, acts on a body of mass, M, it produces in it an acceleration, A, equal to the force divided by the mass. Or $A=F / M$
3. For any force, there is always an equal and opposite reaction force.

Acceleration is a

$$
\begin{aligned}
& \text { change of velocity } \\
= & \text { change in speed } \\
= & \text { change in direction } \\
= & \text { change in both }
\end{aligned}
$$

Newton's 3 Laws of Motion

1. An object at rest tends to stay at rest. An object in motion tends to continue in motion at constant speed in a straight line.

That's it!

Newton's 3 Laws of Motion

2. When a force, F, acts on a body of mass, M, it produces in it an acceleration, A, equal to the force divided by the mass.

$$
\begin{aligned}
& F=M A \\
& A=F / M
\end{aligned}
$$

Newton's 3 Laws of Motion

$$
F=M A \quad A=F / M
$$

The more force on an object, the more it accelerates. But the more massive it is, the more it resists acceleration.

Acceleration = Force $/$ Mass

Nothing Happens If the Forces Are Ballanced

A body accelerates only when an unbalanced force is applied

Newton's 3 Laws of Motion
3. For every action, there is always an equal and opposite reaction.

Newton's 3 Laws of Motion

To every action there is an equal and opposite reaction.

Net effect equivalent to force between centers of mass

$$
\begin{align*}
& \text { Thought Question } \\
& \text { Is the force the Earth } \\
& \text { smaller, or the same as } \\
& \text { A. Earth exerts a larger t } \\
& \text { B. You exert a larger fort } \\
& \text { C. Earth and you exert th } \\
& \text { D. It depends on how far } \\
& \text { you are. }
\end{align*}
$$

Is the force the Earth exerts on you larger，
smaller，or the same as the force you exert on
A．Earth exerts a larger force on you．
B．You exert a larger force on Earth．
C．Earth and you exert the same force on each
D．It depends on how far above the Earth＇s surf
you are．
Is the force the Earth exerts on you larger，
smaller，or the same as the force you exert on it？
A．Earth exerts a larger force on you．
B．You exert a larger force on Earth．
C．Earth and you exert the same force on each othe
D．It depends on how far above the Earth＇s surface
you are．
Is the force the Earth exerts on you la
smaller，or the same as the force you ext
A．Earth exerts a larger force on you．
B．You exert a larger force on Earth．
C．Earth and you exert the same force on e
D．It depends on how far above the Earth＇s
you are．
Is the force the Earth exerts on you la
smaller，or the same as the force you ext
A．Earth exerts a larger force on you．
B．You exert a larger force on Earth．
C．Earth and you exert the same force on e
D．It depends on how far above the Earth＇s
you are．
Is the force the Earth exerts on you larger，
smaller，or the same as the force you exert on it？
A．Earth exerts a larger force on you．
B．You exert a larger force on Earth．
C．Earth and you exert the same force on each other．
D．It depends on how far above the Earth＇s surface
you are．
Is the force the Earth exerts on you larger，
smaller，or the same as the force you exert on it？
A．Earth exerts a larger force on you．
B．You exert a larger force on Earth．
C．Earth and you exert the same force on each othe
D．It depends on how far above the Earth＇s surface
you are．
Is the force the Earth exerts on you la
smaller，or the same as the force you ext
A．Earth exerts a larger force on you．
B．You exert a larger force on Earth．
C．Earth and you exert the same force on e
D．It depends on how far above the Earth＇s
you are．
\qquad

\section*{

 $$
10
$$

 路

 路
 － exert on}Is the force the Earth exerts on you la
smaller，or the same as the force you ext
A．Earth exerts a larger force on you．
B．You exert a larger force on Earth．
C．Earth and you exert the same force on e
D．It depends on how far above the Earth＇s
you are．

[^0]

－

$$
\square
$$
\qquad

\qquad
Is the force the Earth exerts on you la
smaller，or the same as the force you ext
A．Earth exerts a larger force on you．
C．Earth and you exert the same force on e
D．It depends on how far above the Earth＇s
D．Fort a larger force on Earth．
Bore．
on each other
電 ， －
號

\qquad

Is the force the Earth exerts on you la
smaller，or the same as the force you ext
A．Earth exerts a larger force on you．
C．Earth and you exert the same force on e
D．It depends on how far above the Earth＇s
D．Fort a larger force on Earth．
Bore．
$$
0
$$
$$
\square
$$
$$
0
$$
$$
1
$$
$$
0
$$
$$
0
$$
\square
\square

Is the force the Earth exerts on you la
smaller，or the same as the force you ext
A．Earth exerts a larger force on you．
C．Earth and you exert the same force on exert a larger force on Earth．
D．It depends on how far above the Earth＇s
C．You are．

\qquad

Is the force the Earth exerts on you la
smaller，or the same as the force you ext
A．Earth exerts a larger force on you．
B．You exert a larger force on Earth．
C．Earth and you exert the same force on e
D．It depends on how far above the Earth＇s
you are．
者

號

\qquad

.
 T
Is the force the Earth exerts on you la
smaller，or the same as the force you ext
A．Earth exerts a larger force on you．
B．You exert a larger force on Earth．
C．Earth and you exert the same force on e
D．It depends on how far above the Earth＇s
you are．
\qquad

里
－

Is the force the Earth exerts on you lari
－

．

$$
\lambda
$$

\square
smaller, or the same as the force you exert or
\qquad

Same equation applies to M_{2} standing on M_{1}

d is the distance to the center of the planet

Now imagine Bart on a ladder whose length equals Earth's radius

The masses are the same, but Bart has moved from d to 2d from Earth's center

We can compare the gravitational force at the top vs. the bottom by taking a ratio. (text p. A-11)

$$
\begin{aligned}
& F_{t o p}=\frac{G M_{1} M_{2}}{d_{\text {top }}^{2}}=\frac{G M_{1} M_{2}}{(2 d)^{2}}=\frac{G M_{1} M_{2}}{4 d^{2}} \\
& F_{b o t}=\frac{G M_{1} M_{2}}{d_{b o t}^{2}}==\frac{G M_{1} M_{2}}{d^{2}}
\end{aligned}
$$

What's the next step?

A. Divide $F_{\text {top }}$ by $F_{\text {bot }}$
B. Rearrange both equations so one side contains only $G M_{1} M_{2}$
C. Cancel the gravitational constants (G) for both equations
D. Subtract $F_{\text {top }}$ from $F_{\text {bot }}$
E. Divide $F_{\text {top }}$ by 4

Ratios: The mathematical way

$$
F_{t o p}=\frac{G M_{1} M_{2}}{d_{\text {top }}^{2}}=\frac{G M_{1} M_{2}}{(2 d)^{2}}=\frac{G M_{1} M_{2}}{4 d^{2}}
$$

$$
F_{b o t}=\frac{G M_{1} M_{2}}{d_{b o t}^{2}}=\frac{G M_{1} M_{2}}{d^{2}}
$$

$$
\frac{F_{t o p}}{F_{b o t}}=\frac{\frac{\not G M_{1} M_{2}}{4 \not \mathscr{L}^{2}}}{\frac{\mathscr{G M} M_{1} M_{2}}{\not \mathscr{L}^{2}}}=\frac{\frac{1}{4}}{\frac{1}{1}}=\frac{1}{4}
$$

$$
F_{t o p}=\frac{1}{4} F_{b o t}
$$

So the grav. force at the top of the ladder is only $1 / 4$ as strong as at the bottom

Ratios: The logical way

$$
F=\frac{G M_{1} M_{2}}{d^{2}}
$$

What variable changes when Bart moves from the bottom to the top?
$\mathrm{d} \Uparrow 2$
$\mathrm{d}^{2} \Uparrow 4$
$1 / d^{2} \Downarrow 4$
Fね4
So if d (distance) goes up by 2, F (Force of gravity) goes down by 4

Thought Question
How strong would gravity be at the surface if Earth were replaced by a styrofoam ball of the same mass but 10 times the radius?
A. 100 times stronger
B. 10 times stronger
C. unchanged
D. 10 times weaker
E. 100 times wreaker

$$
F_{\mathrm{g}}=G \frac{M_{1} M_{2}}{d^{2}}
$$

Thought Question
How strong would gravity be at the surface if Earth were replaced by a ball of iron with 10 times the mass but the same radius (as regular Earth)?
A. 100 times stronger
B. 10 times stronger
C. unchanged
D. 10 times weaker
E. 100 times wraker

Reading Question

Which of the following is NOT a type of energy?

A. Kinetic energy
B. Quantum energy
C. Thermal energy
D. Gravitational potential energy
E. Radiative energy

REVIEW

$$
F=\frac{G M_{1} M_{2}}{d^{2}}
$$

What variable changed?

$\mathrm{d} \uparrow 10$

$d^{2} \Uparrow 100$
$1 / \mathrm{d}^{2} \Downarrow 100$
Fね100
So if d (distance) goes up by 10, F (Force of gravity) goes down by 100

So far we've only been talking about the FORCE of gravity

- Today: How do we find out the acceleration due to gravity?
- I.e. How fast do things fall towards the Earth?

Acceleration Due to Earth's Gravity

$$
\begin{aligned}
& F=M A \\
& A=F / M
\end{aligned}
$$

$$
M_{2}=M_{c}
$$

$$
A_{c}=\left[G M_{E} M_{c} / R_{E}^{2}\right] / /
$$

$$
M_{c}
$$

$$
=G M_{\text {Earth }} / D_{\text {Earth }}
$$

$=9.8$ meters $/ \mathrm{sec}^{2}$
$M_{1}=M_{\text {Earth }}$ $d=$ radius of Earth $=R_{E}$

How much does the Earth accelerate

 due to the cabbage?
$\frac{M_{1} M_{2}}{d^{2}}$

$$
\begin{aligned}
& F=M A \\
& A=F / M
\end{aligned}
$$

$M_{2}=M_{c}$
$A_{E}=\left[G M_{E} M_{C} / R_{E}^{2}\right] / /$
M_{E}
$=G M_{C} / R_{E}^{2}$
$=2 \times 10^{-24} \mathrm{~m} / \mathrm{s}^{2}$
$M_{1}=M_{\text {Earth }}$ $d=$ radius of Earth $=R_{E}$

$$
\begin{aligned}
& \text { Thought Question } \\
& \text { Which falls faster - a cabbage or a } \\
& \text { medicine ball? } \\
& \text { A. The cabbage will fall faster and hit the } \\
& \text { ground first } \\
& \text { B. The medicine ball will fall faster and } \\
& \text { hit the ground first }
\end{aligned}
$$ Is faster - a cabbage or a

medicine ball?
age will fall faster and hit the
C. They both hit at the same time aster - a cabbage or a
dicine ball?
will fall faster and hit the . -

- \qquad
\qquad
\square
 aster - a cabbage or a
dicing ball?
will fall faster and hit the aster - a cabbage or a
dicine ball?
will fall faster and hit the aster - a cabbage or a
dicine ball?
will fall faster and hit the

$$
0
$$
Δ

>

 4 4 4

$$
0
$$ Titi ? 4

O

 aster - a cabbage or a
dicine ball?
will fall faster and hit the

 \qquad
F -
F

\section*{Why did they hit at the same time?

A. The masses of the cabbage and the medicine ball were tiny compared to the mass of the Earth.
B. The mass of the falling object doesn't matter
C. They actually fell at slightly different speeds but over that small distance it wasn't noticeable
D. No idea

Thought Question

\qquad

Abstract

. No idea
(2)

.

都

都
 \square

-
\qquad \square

\square

Abstract

No idea
\square
 No idea

Acceleration Due to Earth's Gravity

$$
\begin{aligned}
& A_{c}=\left[G M_{E} M_{C} / d^{2}\right] / M_{C} \\
&=G M_{E} / d^{2} \\
& g=G M_{\text {Eanth }} / R_{E}^{2} \\
&=9.8 \text { meters/sec } \\
& \text { Does not depend on } \\
& \text { the mass of the } \\
& \text { falling object!!!! }
\end{aligned}
$$

Acceleration on the Moon

$g_{\text {planest }}=G M_{\text {placest }} / R_{\text {placest }}{ }^{2}$
Mass Moon ~ $M_{\text {earth }} / 100$
Radius Moon $\sim r_{\text {Earth }} / 4$

What is $g_{\text {moon }}$

How about Jupiter?
Mass ~ 300 $\mathrm{M}_{\text {earth }}$
Radius $\sim 11 r_{\text {Earth }}$

How is mass different from weight?

- Mass - the amount of matter in an object
- Weight - the force that acts upon an object (based on acceleration and mass)

> Your weight can change a lot depending on where you are but you mass doesn't.

The Acceleration of Gravity

- All falling objects accelerate at the same rate (not counting friction of air resistance).
- On Earth, $9 \approx 10 \mathrm{~m} /$ s^{2}
- Speed increases 10 m / s with each second of falling.
- $10 \mathrm{~m} / \mathrm{s}$ per s

Thought Question

At exactly the same time that you drop a glass, your roommate throws a bottle perfectly horizontally at your professor. The bottle lands at the feet of your professor. Which smashes first, the ploee an the hnttle?

A. The glass C. Depends on how hard he
B. The bottle threw the bottle
D. Both at same time

Separating horizontal and vertical motions

The harder you throw, the farther it goes ... horizontally.

Into Orbit! orbital velocity

What is orbit?

Objects in orbit are simply falling constantly around the Earth

Thought Question

What happens ${ }_{\text {E }}$ if he lets go of the string?

Does the object move along path A, B, C, D, or E?

What keeps an orbiting object in orbit?

- Gravity!
- Since the direction is changing, there must be an acceleration
- Newton's $1^{\text {st }}$ law
- Gravity is a constant force pulling inward

More on Orbits

- Two ways to look at it, internal (energy) balance or external (force) balance.
- $P E+K E=C(<0)$
- $F=m a=m v^{\wedge} 2 / r=m M G / r^{\wedge} 2$
- If $\mathrm{C} \geqslant 0$?

Why are astronauts weightless in space?

- There is gravity
in space
-Weightlessness
is due to a
constant state of free-fall

How Fast Do Things Orbit?

-Conservation Laws

- Angular momentum-

Conservation of spinning

- My own work on
$\mathrm{accr}_{\ddot{r}}^{\ddot{r}-r \theta^{2}}=-G M r^{-2}+\mathrm{th}$ this
$r \ddot{\theta}+2 \dot{r} \dot{\theta}=0$.

$$
\begin{aligned}
& \frac{d \ell}{d t}=\frac{d\left(r^{2} \dot{\theta}\right)}{d t}=r^{2} \ddot{\theta}+2 r \dot{r} \dot{\theta}=r(r \ddot{\theta}+2 \dot{r} \dot{\theta})=0 \\
& \int_{t_{1}}^{t_{2}} \frac{1}{2} \cdot \text { base } \cdot d(\text { height })=\int_{t_{1}}^{t_{2}} \frac{1}{2} \cdot r \cdot r \dot{\theta} d t=\frac{1}{2} \cdot \ell \cdot\left(t_{2}-t_{1}\right)
\end{aligned}
$$

Objects Orbit The "Center of Mass"

- Because of angular momentum conservation, objects orbit around the center of mass of the system

Orbital Speed

- Planets (orbiters) are constantly trying to get away
- Gravity (from the orbitee) is constantly pulling them back
- We can use Newton's law of gravity to calculate how fast they move

Orbital Speeds for Satellites Around Earth

$$
V_{\text {cirululur }}=\sqrt{\frac{G M_{\text {orbice }}}{r}}
$$

Thought Question

 camera are floating Shuttle, which moves
A. Shuttle has greater speed due to greater mass therefore greater speed) than Shuttle due to lower mass
D. Astronaut, shuttle and camera all have same orbital speed

An astronaut and outside the Space fastest?
 s

路

- Depends only on: - mass of orbitEE
- orbital distance, r

All orbitERS have same orbital speed

Reading Question

A. Because Newton's version only works for one mass.
B. Newton's version was designed for planets.
C. You only need the mass of the object you want the period of.
D. Because usually one of the masses is much smaller

In Newton's version of Kepler's 3rd Law $\left(p^{2}=4 \pi^{2} a^{3} /\right.$ $G\left(M_{1}+M_{2}\right)$), why is $M_{1}+M_{2}$ usually written as just M ?
 p

 .
 of Kepler's 3rd Law $\left(p^{2}=4 \pi^{2} a^{3} /\right.$
M_{2} usually written as just M?

Abstract

■

Abstract

(-20)

号

(

 0 -

$$
\begin{aligned} & \text { n of Kepler's 3rd Law }\left(\rho^{2}=4 \pi^{2} a^{3} /\right. \\ & +M_{2} \text { usually written as just M? } \end{aligned}
$$ -

E. Then the other.
kg^{2}.
E. Then the other.
kg^{2}.
E. Then the other.
kg^{2}.
 , -

$$
0
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

> - 0
\qquad
\qquad -
-
\qquad

$$
\mathrm{kg}^{2} \text {. }
$$

D.

Orbital Times for

Satellites Around Earth

$V_{\text {circular }} \approx 8000 \mathrm{~m} / \mathrm{s} \approx 18,000 \mathrm{mph}$

Escape Velocity

The velocity needed to escape the gravity of the orbitEE

Earth
$V_{\text {circe }}=8 \mathrm{~km} / \mathrm{s}$
$V_{\text {esc }}=11 \mathrm{~km} / \mathrm{s}$

orbital velocity

$$
V_{\text {cricular }}=\sqrt{\frac{G M_{\text {orbice }}}{r}}
$$

Question Suppose Earth were moved to one-fourth of its current distance from the Sun. What would happen to the gravitational force between Earth and Sun?

Before starting any calculations, make a prediction!

- Mathematical way - Logic way

$$
\frac{F_{\text {nev }}}{F_{\text {orig }}}=\frac{\frac{G M_{1} M_{2}}{(1 / 4 d)^{2}}}{\frac{G M_{1} M_{2}}{1}}=\frac{\frac{1}{1 / 16}}{1}=16
$$

$(d)^{2}$

$$
F_{\text {new }}=16 \cdot F_{\text {orig }}
$$

$$
F=\frac{G M_{1} M_{2}}{d^{2}}
$$

d. $\downarrow 4$ times
$\mathrm{d}^{2} \Downarrow 16$ times
$1 / \mathrm{d}^{2} \Uparrow 16$ times
$F \| 16$ times

Newton's Version of Kepler's Third Law

Orbital Time = Total Distance / Speed
circular

$$
P=2 \pi a / V_{\text {circ }}
$$

$$
r=a \text { for }
$$

$$
P^{2}=(2 \pi a)^{2} /\left(V_{\text {circ }}\right)^{2}
$$

circular
orbits orbits

$$
P^{2}=4 \pi^{2} a^{2} /(G M / a)
$$

$$
P^{2}=\left\{4 \pi^{2} / G M\right\} a^{3}
$$

What is M again?

$$
M=\text { Mass of the OrbitEE }
$$

Newton's Version of Kepler's Third Law

$$
p^{2}=\frac{4 \pi^{2}}{G\left(M_{1}+M_{2}\right)} a^{3}
$$

orbital period
average orbital distance (between centers) semi-major axis
$\left.M_{1}+M_{2}\right)=$ sum of object masses

- In most cases, $M_{1}+M_{2} \approx M_{1}$ (Mass of the bigger object)

Kepler's 3rd Law

Years
A.U.

ONLY works for orbiting the SUN

Newton's Version

 of Kepler's 3rd Law$\left.P^{2}=\left\{\frac{4}{s} \pi \pi^{2} / G M\right\}\right\}^{3}$
sec
$G=6.67 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \mathrm{s}^{2}\right)$
works for
ANYTHING orbiting
ANIVTHTNI

Using Newton's Version of Kepler's 3rd Law (NVK3L)

$$
M=\left\{4 \pi^{2} / G\right\} a^{3} / P^{2} \mathrm{~kg}
$$

Measure P
Three variables
If we know two, we can solve for the third!

Timing: Count seconds to make 1 orbit Measure

Direct Observation, Parallax

$$
\text { Calculate } M=\text { mass of orbitEE }
$$

NVK3L can be used on anvthing that orbits!

Ida (Asteroid)
$P \sim 1.5$ days

- Bactyl (asteroid moon)

NVK3L can be used on anything that orbits!

Dactyl (asteroid moon)

$M=3.5 \times 10^{16} \mathrm{~kg}$

- Fvệ̀n if you canit see tht) objప̇ct In the centert

*

How to weigh a black hole...

Even on complex problems like NVK3L, you can use the logical method to compare with known quantities

Extra Credit
How long would one orbit (for Earth) take if the Sun was 4 times as massive as it currently is?
A. $1 / 16$ th of a year (~ 3 weeks)
B. $1 / 4$ th of a year (3 months)
C. $1 / 2$ of a year (6 months)
D. 1 year (12 months, 52 weeks, 365 days, π $\times 10^{7}$ seconds)
E. 2 years

How long would one orbit (for Earth) take if the Sun was 4 times as massive as it currently is?
 $-M \Uparrow 4$
 $-1 / M \downarrow 4$
 $-p^{2} \Downarrow 4$
 $-p \quad \Downarrow \&=2$

What if the orbitER and orbitEE are of similar masses?

Pluto \& Charon
$P^{2}=4 \pi^{2} a^{3}$

Pluto

- Nix
- Hydra

What if the orbitER and orbitEE are

 of similar masses?Pluto \& Charon
$P^{2}=4 \pi^{2} a^{3}$

$P^{2}=4 \pi^{2} a^{3}$
For movie http://pluto.jhuapl.edu/science/ everything_pluto/10_binary_planet.html

Center of Mass

-

- Due to the difference in the strength of gravity across the earth due to the sun and moon
- Tidal friction slows the earths orbit by 1 second/50,000 years
- Earth day may have been 5-6 hours when moon was 10 times closer
- Angular Momentum is conserved, Earth's rotation slows Moons orbital distance grows
- Sun also affects us but by less than half the amount the moon does, 1 million times more massive but 500 times farther

The difference in gravitational attraction
tries to pull Earth apart, raising tidal bulges both toward and away from the Moon.

Not to scale!
Figure 4.23 Tides are created by the difference in the force of attraction between different parts of Earth and the Moon. There are two daily high tides as any location on Earth rotates through the two tidal bulges. (The diagram greatly exaggerates the tidal bulges, which raise the oceans only about 2 meters and the land only about a centimeter.)
Spring tides accur at new moon and full moon:
new

Tidal forces from the Sun (gray arrows)
and Moon (black arrows) work together,
leading to enhanced spring tides.

Neap tides occur at first- and thiro-quarter moon:

Figure 4.25 Intencive ligurk The Sun exerts a tidal force on Earth less than half as strong as that from the Moon. When the tidal forces from the Sun and Moon work together at new moon and full moon, we get enhanced spring tides. When they work against each other, at first- and third-quarter moons, we get smaller neop tides.

Figure 4.26 Edth's IUldten puls ils Lded buyes slightly atieadur the Ealth-Moun line, leadirct to qravitat cnal effects that gracually
 obital energy and distance.

Tidal friction Elsewhere

- Life on moons? Synchronous Rotation?
- Io

[^0]: 都

