Stellar Astrophysics

Lecture 2

Reading questions?

* What's opacity?
* Bring reading questions to class from now on.

Temperature From Luminosity

* The flux received a distance r away from a star of radius R is

$$
F(r)=\sigma T_{e f f}^{4}\left(\frac{R_{s t a r}}{r}\right)^{2}
$$

* Which can be inverted to determine an effective temperature

Magnitude

* Kind of silly but more negative is brighter
* Sun-26.74
* Full Moon - 12.92
* Jupiter - 2.94
* 3-4 faintest naked eye stars in urban environment
* 6.5 naked eye limit in good darkness "9500 stars
* 7-8 absolute best in darkest skies with great eyes

Magnitude difference

$$
m_{1}-m_{2}=2.5 \log _{10}\left(\frac{F_{2}}{F_{1}}\right)
$$

$$
F_{2}=10 F_{1} \rightarrow m_{1}-m_{2}=2.5
$$

For every 1 order of magnitude one object is 2.5 times
brighter/dimmer

How about the sun vs the moon?

$$
\left|m_{1}-m_{2}\right|=|-26.73+12.7|=|-14.03|=14.03
$$

$10^{14.03 / 2.5}=10^{5.612}$

- We receive about 400,000 times more light from the sun
- Every 5 orders of magnitude equates to 100 times the flux - The basic equation to be inverted comes from the definition

$$
\frac{F_{2}}{F_{1}}=100^{\frac{m_{1}-m_{2}}{5}}
$$

In reality

* These are apparent magnitudes, what we see, $m=$ apparent magnitude
* It would be nice to get some benchmark absolute magnitude
* We define an absolute magnitude as that which we would observe if the object were 10 parsecs away by M

Lets try again remembering the definition of flux
 $$
\frac{F_{10}}{F}=100^{\frac{m-M}{5}}=\left(\frac{d_{\text {parsecs }}}{10}\right)^{2}
$$

We can invert this to find dif we know the intrinsic luminosity and to relate the apparent and absolute magnitude

$$
\begin{gathered}
d=10^{\frac{m-M+5}{5}} p c \\
m-M=5 \log _{10}\left(\frac{d}{10}\right)
\end{gathered}
$$

We can either get the distance the object is from us if we know its absolute magnitude or vice versa
Let's get the sun's absolute magnitude, it should be 4.83ish

In Reality

* No detector measures the flux in all wavelengths
* We generally measure in bands, Blue, Red, Ultraviolet
* There is also selective extinction at different wavelengths due to dust which scatters blue light more than red
* Google Color Index and Bolometric Magnitude for details

How do we know what energy levels/lonization States a star is in?

* Sort of important
* We need to know the excitation and ionization states the constituents in a star's atmosphere occupy to determine what we expect to see

Enter the Boltzmann and Saha Equations

* But first, a digression
* We will need to have an equation describing the pressure in a star when discussing its structure
* There are pressure due to particles whizzing about and due to radiation
* Particle pressure first

$$
\begin{aligned}
& P_{\text {gas }}=\frac{\rho K_{B} T}{\mu m_{H}} \\
& \rho=\sum_{i} n_{i} m_{i} \text { mass density } \\
& \mu=\frac{1}{m_{h} n_{\text {tot }}} \sum_{i} n_{i} m_{i} \text { mean molecular weight }
\end{aligned}
$$

In general the pressure of a gas is $P=n_{\text {tot }}+k_{B} T$
For a partially ionized hydrogen plasma $P=\left(n_{1}+n_{1}+n_{e}\right)_{k_{B}} T$

Boltzmann Equation

* For a system dominated by collisions the proportion of atoms in excited state b to those in excited states a is given by the Boltzmann equation

$$
\frac{N_{b}}{N_{a}}=\frac{g_{b}}{g_{a}} e^{\frac{-\left(E_{b}-E_{a}\right)}{k_{B} T}} \quad \frac{n_{i}}{n_{i o n}}=\frac{g_{i}}{U_{i o n}} e^{\frac{-E_{i}}{k_{B} T}}
$$

Where the ${ }^{g}$'s represent the degeneracy of the state Remember, for a hydrogen atom there are two spin states The degeneracy for hydrogen is then $2 n^{2}$ where n is the energy level
$U_{\text {ion }}$ is a partition function, it will be given

$$
E_{n}=13.6\left[1-\frac{1}{n^{2}}\right] e V
$$

Let's do an example

* At what temperature does a system have an equal number of atoms in the first and second energy level or

$$
1=\frac{2\left(2^{2}\right)}{2\left(1^{2}\right)} e^{\left(-13.6 \mathrm{eV} / 2^{2}-\left(-13.6 \mathrm{eV} / 1^{2}\right)\right) / k_{B} T}
$$

$$
\begin{aligned}
& \frac{10.2 e V}{k_{B} T}=\ln (4) \\
& T=8.54 \times 10^{4} \mathrm{~K}
\end{aligned}
$$

The Saha Equation

* Or, how to determine relative ionization states
* Z's are partition functions, a way to calculate a weighted sum for the different electronic transitions that result in the same energy level.
* Take stat therm for more

$$
\frac{N_{i+1}}{N_{i}}=\frac{2 Z_{i+1}}{n_{e} Z_{i}}\left(\frac{2 \pi m_{e} k_{B} t}{h^{2}}\right)^{3 / 2} e^{-E_{i} / k_{B} T}
$$

Problem 11

Homework Hint

* Electron pressure $=n_{e} k_{B} T$
* Rewrite the Saha using this or use this afterwards
* Let's work problem 10

Spectral classification * Let's start with non-ionizing hydrogen transitions

 $$
\begin{aligned} & \Delta E_{m n}=\frac{h c}{\lambda_{n \rightarrow m}} \\ & \alpha=1 \\ & \beta=2 \\ & \gamma=3 \end{aligned}
$$
 etc

Ho H
$H \beta$
$\mathrm{H} \alpha$

HR Diagram

* Letter - Spectral Class
* Number 0-9, lower is hotter
* Roman Numeral * IIIIIII,IV,
* Sun is G2V

Cluster Identification

How Many of Each Type?

Figure 12.9 The initial mass function, ξ, shows the number of stars per unit area of the Milky Way's disk per unit interval of logarithmic mass that is produced in different mass intervals. Masses are in solar units. (Figure adapted from Rana, Astron. Astrophys., 184, 104, 1987.)

* 1-calculate total luminosity from earth. assume $T=300 \mathrm{~K}$
* 2 Extra Credit
* 6 -must do integral numerically
* 9 Results in a quadratic $U_{1}=2 U_{2}=1, N_{e}=N_{I I}$
* skip 11,14

