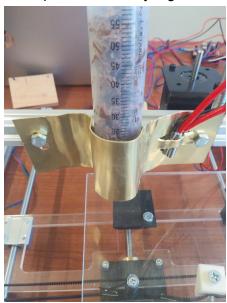
- Step 1: Download all the STL files.
- Step 2: Purchase all files outlined in table 1.
- Step 3: Cut 2020 extruded aluminum into 5 length of 14 inches.
- Step 4: Tap all end holes on aluminum with an M6X1 tap.
- Step 5: Attach corner pieces of aluminum to make a 14*14in base.

- Step 6: Use scrap aluminum that is approximately 8 inches in length to create columns.
- Step 7: Add the last 14 inch piece as a cross brace.
- Step 8: Laser cut the DXF Files outlined in files.
- Step 9: Attach linear rails using the M6X1 tap.


Step 10: Assemble the large rail as shown in the photo.

Step 11: Mount motors.

Step 12: Connect all circuits to the power supply.

Step 13: Bend sheet metal into a shape to hold the syringe.

Step 14: Download arduino IDE program.

Step 15: Set steps/mm using the equations. $Lead\ Screw = \frac{200\ steps}{Lead\ length} \qquad Pully$

$$Lead\ Screw = \frac{200\ steps}{Lead\ length}$$

$$Pully = \frac{200 \text{ steps}}{Circumference}$$

Step 16: Tap and die an 8 mm shaft.

Step 17: Mount syringe.

Step 18: Load a program and enjoy!