

Gabe's Chocolate Factory

By Gabriel Falcao, Jordan Coquoz, and George Vandorpe

Problem Statement

Purpose -

- The engineering team is designing a chocolate 3D printer for "Be Sweet" bakery.
- Primary goal is to print out chocolate letters for designs.
- The printer will be able to manually change the Z-axis for baked goods.

Scope -

- This project will have all its planning and details displayed on our website for future rebuilds.
- The total length of time this engineering team will have to create a functional prototype is 16 weeks.

Customer Requirements

- Printer must be able to print chocolate lettering for cakes. 30%
- Lettering should be easy to input and have a variety of fonts. 20%
- Must be easy to sanitize. 30%
- Should handle one print job without being reloaded. 10%
- Font must be appropriate for cakes. 10%

All data collected from client

Customer Requirements Met

- Prints in chocolate
- Has a variety of decoration applications
- Easy to sanitize
- Adequate chocolate volume and build area
- Low cost

Engineering Specifications

- Two axis bed to avoid inertial loads from the head -15
- Motors that can apply .525 lb of linear force -15
- Extruder head between 80 and 90 degrees celsius -20
- Feed rate of 4000 mm/min -5
- 24 volt power supply -10
- 4 ohm heating element -10
- Accuracy of .5 mm in at least one axis -25

Competition

Cost: \$2000

Functionally can print chocolate in 3D

Concept Generation - Head - Concept 1

The compressed air extruder would operate by having another

system of compressed air being inserted into the extruder head.

The pressure form the compressed air would create flow.

Concept Generation - Head - Concept 2

The gear extruder head would act like a pump.

There would be a motor that creates the

Motion of the two gears and pushes the

Chocolate through the head.

Concept Generation - Head - Final

The plunger concept for the head is a design where the chocolate would be

Extruded by adding pressure to a syringe. The compressed chocolate would

Escape through the hole at the bottom of the syringe and the rate at which

It leaves would be controlled by the pressure.

Concept Evaluation - Head & Chocolate

Extruder Heads	Weight 👻	Gear Extruder	Plunger Extruder 💌	Compressed Air 💽
Charalteres				
Cleaniness	0.5	0	1	0
Ease of Use	0.2	1	0	-1
Cost	0.2	-1	0	1
Novelty/Aesthethics	0.1	0	0	1
Total		0	0.5	0.1
Chocolate 💌	Weight 🝷	Belgian Dark Chocolate 🔻	Ukrainian Chocolate 💌	Dense Milk Chocolate 💌
Cost	20%	0	-1	1
Cooling Rate	30%	1	0	-1
Taste	30%	1	1	0
Availabitity	20%	0	-1	1
Total		0.6	0.3	0.1

Concept Generation - Bed - Concepts

There were two concepts for the bed which was the delta

and the cartesian beds. The delta would operate in 3

Dimensional coordinate system while the cartesian would

Operate in a simple X-Y 2 dimensional.

Each element moves only in one direction.

Printer head can move in any direction quickly.

Concept Evaluation - Bed

Head Heating

4 ohm heating wire

Temperature control circuit

DC to DC converter

2 Axis Bed Method

Nema 17 Motor Calcs

Torque of motor = 44 N*cm

Lead screw Diameter = .8cm

From daycounter torque calculator

Friction = .12

Pitch diameter = 4mm

Threads per cm = 4

Total force = 150 lb

Weight of full table = 1.73 lb

Friction of bearings = .3

Total force needed to be pushed = .525 lb

Belt

44 N*cm / .4 cm = 110 lb

Needs to move even less than lead screw so will be able to do so with almost 0 motor load

Code Customization

Steps per mm.

Lead = the amount of linear motion in one rotation

09:52:29.778 -> \$0=5.367 (x, step/mm) 09:52:29.778 -> \$1=25.000 (y, step/mm) 09:52:29.778 -> \$2=25.000 (z, step/mm)

Lead screw 4 start with pitch of 2mm = 8mm translation / rotation

200 steps / rotation

25 steps / mm

Code Customization

Pulley translation

Diameter = 11.86 mm

Circumference = 37.26 mm

200 steps / rotation

5.367 steps / mm

09:52:29.778 -> \$0=5.367 (x, step/mm) 09:52:29.778 -> \$1=25.000 (y, step/mm) 09:52:29.778 -> \$2=25.000 (z, step/mm)

Redesign

Drawings & Bill of Materials

TEM NO.	PART NUMBER	DESCRIPTION	QTY.
1	Extruded Aluminum	В∪у	2
2	Rail Holder	Manufacture	4
3	Rail	Βυγ	2
4	Linear Bearing	Βυγ	4
5	Largerail	Manufacture	1
6	BED	Manufacture	1
7	TableGuide	Manufacture	3
8	3dprintedbedlift	Manufacture	4
9	hold up pin	Manufacture	4
10	bearing	Βυγ	5
11	NEMA17	Βυγ	3
12	Shaft	Βυγ	3
13	GT2 Timing Gear Alumium For Belt	В∪у	2
14	Bearing holder	Manufacture	1
15	non_motor_shaft	Manufacture	1

SOLIDWORKS Design

Redesigns

Redesigns

Cost Breakdown

Vendor Links on Website.

Item	Price
T&B Gt2 2 Meters Timing Belt and 2 X Aluminum 20t 8mm Pulleys Set	\$8.99
Fenstore Linear Rail 2 Pcs 8mm x 400mm Cylinder Liner Rail Linear Shaft Optical Axis + 4 Pcs Rod Rail Shaft Support	\$23.95
4pc 2020 CNC 3D Printer Parts European Standard Anodized Linear Rail Aluminum Profile Extrusion for DIY 3D Printer	\$29.99
PZRT 2PCS Silver 2020 Aluminum Profile European Standard Anodized Linear Rail 2020 Aluminum Profile Extrusion	\$15.99
OctagonStar T8 L400mm 8mm Lead 4 Start Lead Screw and Nut	\$9.90
Professional 3D Printer CNC Kit, GRBL CNC Shield +UNO R3 Board+ RAMPS 1.4 Mechanical Switch Endstop+DRV8825 GRBL Stepper Motor Driver+Nema 17 Stepper Motor	\$57.47
uxcell 635-2RS Deep Groove Ball Bearing 5x19x6mm Double Sealed ABEC-3 Bearings 10-Pack	\$8.79
Shipping + Tax	\$18.58
	\$173.66

Testing Plan

- Move bed 1 inch and pause. Measure actual distance. Repeat for entire build area. Move bed 1 inch. Place dial indicator on table. Move back .25 inch and measure actual movement. Repeat 4 times.
- Temperature gauge will be set on syringe and measured for variation throughout the extrusion process. Temperature consistency test
- Volume per second will be measured as the feed rate. It will be evaluated for the jog speed of 10mm/s
- The printer will be tested to an accuracy of 3mm
- The chocolate will be tested to be at the correct temperature where it does not run onto the bed.
- The team will attempt to clean the printer after use to see the level of ease.

Testing Results X-Axis

X-Axis	Computer Distance	Actual Distance	Units	X-Axis	Computer Distance	Actual Distance	Units
	25	25	mm		10	10	mm
94 12	25	27	mm		15	16	mm
	25	25	mm		20	22	mm
97 22	25	25.5	mm		25	25	mm
	25	25	mm		30	31	mm
AVG		25.5			5		24 17

X-Axis	Computer Distance	Actual Distance	Backlash	Units
	25	25	0	mm
	25	25	0	mm
	25	25	0	mm
	25	26	1	mm
	25	25	0	mm

Testing Results Y-Axis

		line and the second			Computer		
Y-Axis	Computer Distance	Actual Distance	Units	Y-Axis	Distance	Actual Distance	Units
						Motor Coupler	
	25	13	mm		10	Failure	mm
						Motor Coupler	
6	25	23	mm		15	Failure	mm
		Motor Coupler				Motor Coupler	
	25	Failure	mm		20	Failure	mm
1		Motor Coupler				Motor Coupler	
	25	Failure	mm		25	Failure	mm
6		Motor Coupler				Motor Coupler	
	25	Failure	mm		30	Failure	mm

Testing Results Temperature

Chocolate takes approximately 30 min to melt uniformly.

Temp	Time	Temperature Measured	Units
	10	76	₽C
	20	87.1	₽C
	30	88.8	₽C
	40	82.7	₽C
	50	76.6	₽C
	60	88.3	₽C
Average Temp	83.25ºC	Difference (Max-Min)	12.8ºC

Testing Results Z-Axis

Inconclusive

Customer Requirements and Engineering Specifications

- Has a two letter function: i and l
- Can create symbol
- Severely limited in final functionality for customer
- Two axis bed to avoid inertial loads from the head
- Motors that can apply .525 lb of linear force
- Extruder head between 80 and 90 degrees celsius
- Feed rate of 4000 mm/min
- 24 volt power supply
- 4 ohm heating element
- Accuracy of .5 mm in at least one axis

Gantt Chart and Timeline

		Project Start:	Wed, 8/	28/2019								
		Display Week:	10		Oct 28, 2019	Nov 4, 2019	Nov 11, 2019	Nov 18, 2019	Nov 25, 2019	Dec 2, 2019	Dec 9, 2019	Dec 16, 2019
					28 29 30 31 1 2	3 4 5 6 7 8 9	10 11 12 13 14 15 16 1	7 18 19 20 21 22 23 24	4 25 26 27 28 29 30 1	1 2 3 4 5 6 7 8	9 10 11 12 13 14 15	16 17 18 19 20 21 22
TASK	ASSIGNED TO	PROGRESS	START	END		S M T W T F S						M T W T F S S
Extruder Head	All Members	100%	10/22/19	11/7/19								
Material Selection	All Members	100%	10/22/19	11/7/19								
Purchase Report	All Members	100%	10/22/19	10/29/19								
Prototyping												
Sub-Body Assembly	All Members	100%	11/7/19	12/2/19								
Body Assembly	All Members	100%	11/7/19	12/2/19								
Extruder Heads	All Members	80%	11/7/19	12/2/19								
Material Feed Line	All Members	50%	11/7/19	12/4/19								
Coding	George & Jordan	100%	11/7/19	12//2019								
Testing and Website												
First Testing	All Members	100%	10/21/19	12/2/19								
Second Testing	All Members	80%	11/25/19	12/4/19								
Website shell	Gabe & George	100%	9/16/19	9/26/19								
Website Design	Gabe & George	100%	9/16/19	11/22/19								

Website

https://org.coloradomesa.edu/~gavandorpe/Gabes_Chocolate_Factory/

Demonstration

Questions?