# Electromagnetic Theory I: Homework 6

Due: 9 September 2025

This assignment will be graded immediately after the due date. If you get all problems correct, then you will receive 100%. If you have made any errors, then I will deduct 10%, point the errors out and you must submit a corrected assignment by 16 September 2025. If there are still errors, then I will deduct another 10% and you must submit the corrected assignment by 23 September 2025. This will continue until you have solved every problem correctly.

### 1 Divergence theorem

Let

$$\mathbf{v} = 5xy^3\mathbf{\hat{x}} + 5yx^3\mathbf{\hat{y}}.$$

Consider the region enclosed by the rectangular box for which  $0 \le x \le 2$ ,  $0 \le y \le 2$ , and  $0 \le z \le 1$ .

- a) Determine  $\oint \mathbf{v} \cdot d\mathbf{a}$  for the entire surface.
- b) Determine  $\int \nabla \cdot \mathbf{v} \, d\tau$  for the region and verify that the divergence theorem is satisfied.

#### 2 Uniform vector fields

- a) Let  $\mathbf{v} = v\hat{\mathbf{x}}$ , where v > 0 and consider the sphere centered at the origin. Is  $\oint \mathbf{v} \cdot d\mathbf{a}$  positive, negative or zero for the spherical surface? Explain your answer.
- b) Consider an arbitrary uniform vector field and *any* closed surface. Is  $\oint \mathbf{v} \cdot d\mathbf{a}$  positive, negative or zero for the spherical surface? Explain your answer.

#### 3 Stokes' theorem

Let

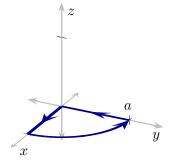
$$\mathbf{v} = \frac{y}{2} \,\,\mathbf{\hat{x}} - \frac{1}{2x^3} \,\,\mathbf{\hat{y}}$$

and consider the path with straight line segments  $(1,1,0) \to (2,1,0) \to (2,2,0) \to (1,2,0) \to (1,1,0)$ . Verify that Stokes' theorem is true for this loop using the flat surface that it encloses.

### 4 Surface integrals for uniform fields

Consider an arbitrary vector field  $\mathbf{v}$ . The surface integral  $\oint \nabla \times \mathbf{v} \cdot d\mathbf{a}$  is computed over two surfaces: 1) a disk in the xy plane centered at the origin (normal points along  $\hat{\mathbf{z}}$ ) and 2) a hemisphere whose base is the same as the disk and is above the base (normal is outward). How are the two surface integrals related? Hint: Don't try to actually evaluate an integral. Think about Stokes' theorem.

## 5 Cylindrical unit vectors


Consider two points in the z=0 plane. Denote the point (1,1,0) by  $P_1$  and the point (1,-1,0) by  $P_2$ . Is  $\hat{s}$  the same at  $P_1$  as  $P_2$ ? Is  $\hat{\phi}$  the same at  $P_1$  as  $P_2$ ? Explain your answers.

# 6 Stokes' theorem: cylindrical coordinates, 5

Consider the vector field, in cylindrical coordinates,

$$\mathbf{v} = s\cos\phi\,\hat{\mathbf{s}} - s\sin\phi\,\hat{\boldsymbol{\phi}}.$$

- a) Sketch the vector field in the xy plane.
- b) Determine the line integral along the illustrated path (the curved path is a section of a circle).
- c) Verify that Stokes' theorem is true in this case.




## 7 Divergence theorem: cylindrical coordinates, 2

Consider the vector field, in cylindrical coordinates,

$$\mathbf{v} = s\sin\phi\,\hat{\mathbf{s}} + s\cos\phi\hat{\boldsymbol{\phi}} + z\hat{\mathbf{z}}$$

and the illustrated surface which is a quarter cylinder of radius a and height b.

- a) Determine the surface integral integral over the entire closed surface.
- b) Verify that the divergence theorem is true in this case.

