Warm Up Question 1

A displacement vector with magnitude $10\,\mathrm{m}$ points at an angle of 60° from the +y-axis. Determine the y-component of this vector.

- 1. 5 m, since $10 \cos (60^{\circ})$.
- 2. 5 m, since $10 \sin (30^{\circ})$.
- 3. $8.66 \,\mathrm{m}$, since $10 \sin{(60^{\circ})}$.

Constructing a Vector from Unit Vectors

How the illustrated vector $\vec{\boldsymbol{A}}$ is decomposed into unit vectors

$$\vec{A} = 5\hat{i} + 2\hat{j}$$

Constructing a Vector from Unit Vectors

How the illustrated vector $\vec{\boldsymbol{A}}$ is decomposed into unit vectors

$$\vec{A} = -4\hat{i} + 2\hat{j}$$

Constructing a Vector from Unit Vectors

How the illustrated vector $\vec{\boldsymbol{A}}$ is decomposed into unit vectors

$$\vec{A} = 3.5\hat{i} - 2\hat{j}$$

Question 1

Two vectors are illustrated.

Let $\vec{C}=\vec{A}-\vec{B}.$ Which of the following represents $\vec{C}?$

1.
$$\vec{C} = 2\hat{i} + \hat{j}$$

$$2. \vec{C} = 2\hat{i} - \hat{j}$$

3.
$$\vec{C} = 2\hat{i} - 2\hat{j}$$

4.
$$\vec{C} = 5\hat{j}$$

5.
$$\vec{C} = -5\hat{j}$$

Warm Up Question 2

Let $\vec{A}=2\hat{i}+3\hat{j}$ and suppose that $\vec{B}=\alpha\vec{A}$ for some real number α . Explain whether it is possible that

$$\vec{B} = 20\hat{i} - 30\hat{j}.$$

- 1. No. The signs of the components of $\vec{B}=\alpha\vec{A}$ must be the same as each other.
- 2. No. Multiplying by $\alpha=10$ would produce the correct $\hat{\bf i}$ component but an incorrect $\hat{\bf j}$ component.
- 3. No. $\vec{B}=\alpha\vec{A}$ must be parallel to \vec{A} and $20\hat{i}-30\hat{j}$ is not.
- 4. Yes. c = 10 works.

Question 2

Various balls follow the illustrated trajectories.

Which balls have the same average velocity in the interval from $2\,\mathrm{s}$ to $4\,\mathrm{s}$?

- 1. All have the same.
- 2. None have the same.
- 3. A and B.
- 4. B and C.
- 5. A and C.