Intermediate Laboratory: Homework 5

Due: 7 March 2024

1 Taylor, Error Analysis, 2nd ed., 6.2, page 170.

2 Specific heat

In the experiment to determine the heat capacity of water the total heat capacity, C_{tot} , is plotted against the mass of water m_{w} . A trend line is fitted to the data giving

$$C_{\text{tot}} = am_{\text{w}} + b$$

where $a=4.0\pm0.4\,\mathrm{J/gK}$ and $b=58\,\mathrm{J/K}$. Suppose that there is a data point for which $m_\mathrm{w}=145\,\mathrm{g}$ and $C_\mathrm{tot}=750\,\mathrm{J/K}$

- a) According to the trend line data what would the expected value of C_{tot} be when $m_{\text{w}} = 145\,\text{g}$? What would the uncertainty in C_{tot} be?
- b) Should the data point be rejected according to Chauvenet's criterion? Note that there is effectively only one measurement at this point.
- **3** Taylor, Error Analysis, 2nd ed., 6.6, page 171.
- 4 Taylor, Error Analysis, 2^{nd} ed., 7.1, page 178.
- $\textbf{5} \;\; \text{Taylor}, \; \textit{Error Analysis}, \; \textit{2}^{nd} \;\; ed., \; 7.4, \; \text{page 178}.$

6 Specific heat capacity of water

Four lab groups obtained the following results in an experiment to measure the specific heat capacity of water.

Group	Specific heat capacity in J/gK
1	4.1 ± 0.2
2	4.0 ± 0.4
3	3.9 ± 0.8
4	3.9 ± 0.7

Determine the weighted average and uncertainty for the specific heat capacity of water using all of this data.