Intermediate Laboratory: Homework 1

Due: 26 January 2024

Read chapters 1 and 2 and complete the following problems. The numbers refer to the second edition of the text; numbers of the third edition are listed in italics.

1 Taylor, Error Analysis, 2 ${ }^{\text {nd }}$ ed., 2.2, page 35.(2.2 in $3^{r d}$ ed.)
2 Taylor, Error Analysis, $2^{\text {nd }}$ ed., 2.4, page 36.(2.4 in $3^{\text {rd }}$ ed.)
3 Taylor, Error Analysis, 2 $2^{\text {nd }}$ ed., 2.6, page 36.(2.6 in $3^{\text {rd }}$ ed.)
4 Taylor, Error Analysis, $2^{\text {nd }}$ ed., 2.12, page 38.(2.14 in $3^{r d}$ ed.)
5 Taylor, Error Analysis, $2^{\text {nd }}$ ed., 2.15, page 39.(2.17 in $3^{r d}$ ed.)

6 Digital Ammeters

A cheap digital ammeter can read a current to the nearest 0.10A.
a) Would this ammeter be able to measure a 3.0 A current to a precision of 2% ? Explain your answer.
b) Would a more precise ammeter that can measure to 1 mA be able to do this? Explain your answer.

7 Fractional Uncertainties

a) The quantity g is measured in an experiment. Data analysis gives $9.7532 \mathrm{~m} / \mathrm{s}^{2}$ with an uncertainty of 4%. Determine the uncertainty is g, the error in g and the correct number of significant figures to report for g. Write the result of the experiment in the standard form for expressing a measured quantity.
b) The universal gas constant is measured in an experiment and this gives $R=8.32 \mathrm{~J} / \mathrm{mol} \mathrm{K}$ with a 0.5% error. Write the result of this experiment in the standard form for expressing a measured quantity.

8 Taylor, Error Analysis, $2^{\text {nd }}$ ed., 2.28, page 42.(2.30 in $3^{\text {rd }}$ ed.)

