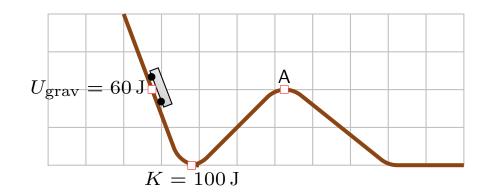

Question 1

A cart slides along a track as illustrated. The reference y=0 is taken at the lowest point on the track. Various energies are shown at the indicated points.

Which of the following is true regarding the total energy of the cart?

1.
$$E = 40 \,\mathrm{J}$$


2.
$$E = 60 \,\mathrm{J}$$

3.
$$E = 100 \,\mathrm{J}$$

4.
$$E = 160 \,\mathrm{J}$$

Question 2

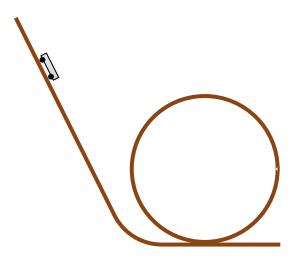
A cart slides along a track as illustrated. The reference y=0 is taken at the lowest point on the track. Various energies are shown at the indicated points.

Which of the following is true at point A?

1.
$$U_{grav} = 100 \,\mathrm{J}$$
 $K = 0 \,\mathrm{J}$

2.
$$U_{\text{grav}} = 100 \,\text{J}$$
 $K = 60 \,\text{J}$

3.
$$U_{\text{grav}} = 60 \,\text{J}$$
 $K = 0 \,\text{J}$


4.
$$U_{\text{grav}} = 60 \,\text{J}$$
 $K = 40 \,\text{J}$

5.
$$U_{\text{grav}} = 40 \,\text{J}$$
 $K = 60 \,\text{J}$

23 October 2024 Phys 131 Fall 2024

Question 3

A roller coaster cart is released from rest on a ramp. The cart approaches a loop with radius ${\cal R}.$

What is the *minimum* height from which the cart must be released if it is to complete the loop without falling?

- 1. Less than R.
- 2. Exactly R.
- 3. Between R and 2R.
- 4. Exactly 2R.
- 5. Larger than 2R.

23 October 2024 Phys 131 Fall 2024

Warm Up Question 1

A dog takes a ride in two different elevators. The first elevator lifts the dog though height $20\,\mathrm{m}$ at a constant speed; this takes $3\,\mathrm{s}$. The second elevator also lifts the the dog though height $20\,\mathrm{m}$ at a constant speed; this takes $9\,\mathrm{s}$. How does the power delivered in lifting the dog for the second elevator compare to that of the first? Explain your answer.

- 1. Second elevator gives 1/3 power. Takes three times as long.
- 2. Same. Force is the same.
- 3. Same. Distance is the same.

Question 4

Various springs, with spring constants indicated, are held compressed from their equilibrium (relaxed) positions as illustrated.

200 N/m
Case A

200 N/m
Case B

The springs uncompress. Which of the following best represents the rank of the works done by the springs from the initial state to their relaxed positions?

1.
$$W_{A} = W_{B} = W_{C}$$

2.
$$W_{A} < W_{B} = W_{C}$$

3.
$$W_{A} < W_{B} < W_{C}$$

4.
$$W_{A} < W_{C} < W_{B}$$