Lecture 35

Test 3 Covers * Waves, Light, Photons

- * Ch 9.1-9.6, 12.1-012.3
- * Lectures 28-35
- * HW 8,9

Study: 2022 Test 3 Q1-Q8

2023 Test 3 Q1-Q10

Bring: Calculator

Given: Formulas on Front Sheet.

HW 8 Q3 Solution

Open animation and set up as asked

- a) Use 5 cm distance time = 3.86s
- =0 speed = $\frac{\text{distance}}{\text{time}} = \frac{5cm}{3.86s} = 1.3 \text{cm/s}$.
- b) Measure 4.2cm
- c) Takes 16.8s for 5 to pass. $\sim D$ time from one to next = $\frac{16.8s}{5}$ C_D period = $\frac{1}{3.36s}$ Frequency = $\frac{1}{period} = \frac{1}{3.36s} = 0.30$ Hz
- 1) wavelength xfreq = 4.2cm x 0.30Hz = 1.25cm/s clase to speed.

Cha Waves

Know * terminology - wavelength - period

- frequercy

- speed

* interference

* evidence for wave picture of light - double shit experiments.

Quiz1 90%

1 Continuous waves

A snapshot of a wave on a string at a particular instant a segment of the string is illustrated.

The crest labeled A takes 1.0 s to arrive at the point labeled B.

- a) Determine the wavelength of the wave.
- b) Determine the speed of the wave.
- c) Determine the frequency of the wave.
- d) How many crests pass the dashed line in 10s?

Answer: a) Distance from one crest to next = 5 m

c) frequency = speed/wavelength =
$$\frac{10mIs}{5m} = 2 Hz$$

d) The frequency is the number of crests that pass in 1s. So there will be 2HZ×10s = 20 crests.

Mirrie L

2 Interference of waves on a string

Two rectangular wave pulses move along a string with speeds 1 cm/s. Initially the string appears as illustrated.

Use the axes below to illustrate the appearance of the string after 2s has passed.

Quizz 90% -60% + Solution -60%

3 Hydrogen radiation from stars

Hydrogen emits radio waves (type of electromagnetic waves) with a wavelength of $21\,\mathrm{cm} = 0.21\,\mathrm{m}$.

- a) Determine the frequency of these waves.
- b) Suppose that such waves take 10 years to travel from a star to Earth. Determine the distance from the star to Earth.
- c) Determine how many crests from these waves arrive at the Earth in one minute.

Answer: a) frequency =
$$\frac{\text{Speed}}{\text{wavelength}} = \frac{3 \times 108 \text{m/s}}{0.21 \text{m}} = 1.4 \times 109 \text{Hz}$$

Ch 12

know * photon model of light - evidence for this.

- * meaning of photon energy.
- * photons in interference
- * probabilities

Quiz 4 90%

4 Green photons

A green light bulb produces light with wavelength $560 \,\mathrm{nm} = 5.60 \times 10^{-7} \,\mathrm{m}$. The bulb produces 60 J of energy every second.

- a) Determine the energy of each photon.
- b) Determine the number of photons produced every second.

every =
$$6.63 \times 10^{-34} \text{ J.s.} \times 5.4 \times 10^{14}$$

every crephorum =
$$3.6 \times 10^{-19} \text{J}$$

b) Number = $\frac{60 \text{J}}{\text{every for cre}} = \frac{60 \text{J}}{3.6 \times 10^{-19} \text{J}} = 1.7 \times 10^{20}$

Quiz 5