Weds: Review

Fri: Test 3 Waves, photon model

2022 Test Q1 - 08

2023 Test Q1 -0 Q10

Photon model of light

In the photon model of light, a stream of light consists of individual particle like entities.

1/1/2 2 300 photon:

Predict where the photons will arrive using a wave associated with the photons.

Intensity of wave at screen/ detectors gives probability of arrival

arrival locations

Additionally there is an energy associated with photons.

Given light with one frequency (or one wavelength) The energy of a single photon is given by Janles

Given wavelength Property = 6.63×10-343.s × frequency

frequency = 3.0 × 10 8 m/s waveley th

Quiz1 50% - 80%

Quiz2 80%

DEMO: Spectrum Tube + 6 lasses

- Show different wavelengths (colors

Concepts of Physics: Group Exercise 7

11 November 2024

Names:	

1 Photon energies and numbers, coin analogy

A particular light source can produce photons, each with energy $25 \times 10^{-20} \,\mathrm{J}$. Consider a pulse of light produced by this source. Remember that the pulse consists of a number of individual photons.

- a) Consider the total energy in the pulse. List the five lowest possible total energies that the pulse could have.
- b) Is it possible that the pulse has total energy 175×10^{-20} J? Explain your answer.
- c) Is it possible that the pulse has total energy $185 \times 10^{-20} \, \text{J}$? Explain your answer.

There is an analogy with money. In the following, suppose that the only cash one has is a collection of coins and that the only coins in the collection are quarters.

- d) List the five lowest possible amounts of cash that one could have in the collection.
- e) Is it possible that the amount of cash one has is \$1.75? Explain your answer.
- f) Is it possible that the amount of cash one has is \$1.85? Explain your answer.
- g) Suppose that the amount of cash is \$18.50. Determine the number of coins in this collection. How did you do this?
- h) Now suppose that the collection of coins only consisted of dimes. List the five lowest possible amounts of cash in the collection. If the total amount of cash were \$18.50, how many coins would the collection contain? Which collection contains more coins? How did you determine this?

d)	number of quarters	money
	G	\$0.00
	1	\$0.25
	2	\$ 0.56
	3	\$0.75
	4	\$0,00
	2	\$1,25

- e) Yes, it requires 7 quarters
- f) No, this is between 7 and 8 quarter.

h) \$0.00 \$0.30 number =
$$\frac{$18,50}{$0.10}$$
 = 185 dimes. -D collection of \$0.20 \$0.50 dimes = 0 More coins

Now consider photons produced by different laser pointers, one red and the other green. The specifications of these are that the wavelength for the red is 6.35×10^{-7} m and the wavelength of the green is 5.20×10^{-7} m. The power produced by each is 0.005 W. We will use these to determine the number of photons that each laser produces in one second.

- i) Determine the frequency of the light produced by each laser pointer.
- j) Determine the energy of a single photon produced by each laser pointer.
- k) The power specification means that in each second the laser produces a total energy of 0.005 J. Determine the number of photons that each laser produces in one second.
- 1) If you were to shine these lasers on a double slit, do you expect that you would notice individual photons in the pattern? Explain your answer.

i) freq =
$$\frac{3.0 \times 10^{16}}{\text{wavelergHh}} = \frac{3.0 \times 10^{16} \text{m/s}}{6.35 \times 10^{-7} \text{m}}$$
 freq = $\frac{3.0 \times 10^{16} \text{m/s}}{5.2 \times 10^{-7} \text{m}}$ freq = $\frac{3.0 \times 10^{16} \text{m/s}}{5.2 \times 10^{-7} \text{m}}$ = 5.8×10^{14} = 5.8×10^{14} energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| i) energy = $6.63 \times 10^{-34} \times 4.7 \times 10^{14} \text{Hz}$ energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| ii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{-14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{-14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{-14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{-14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{-14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{-14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{-14}$.

| iii) energy = $6.63 \times 10^{-34} \times 5.8 \times 10^{-14}$.

| iii) energy = $6.63 \times 10^{-34} \times 10^{-14}$.

| iii) energy = $6.63 \times 10^{-34} \times 10^{-14}$.

| iii) energy = $6.63 \times 10^{-34} \times 10^{-14}$.
| iii) energy = $6.63 \times 10^{-14} \times 10^{-14}$.
| iii) energy = $6.$