21 October 2024 Phys 100 Fall 2024

Question 1

Two small bulbs are on for different amounts of time. The currents and times are as indicated.

Wire	Current	Time On
Bulb A	$0.20\mathrm{A}$	$100\mathrm{s}$
Bulb B	0.10 A	$400\mathrm{s}$

Which of the following is true while the bulbs are on?

- 1. The total charge flowing through B is the same as that of A.
- 2. The total charge flowing through B is smaller than that of A.
- 3. The total charge flowing through B is larger than that of A.

21 October 2024 Phys 100 Fall 2024

Question 2

A bulb is connected to a battery. When the switch is closed the bulb lights up and also produces heat.

Which of the following is true?

- 1. Switch closed \rightarrow battery loses energy; Switch open \rightarrow battery loses energy.
- Switch closed → battery loses energy;
 Switch open → battery gains energy.
- 3. Switch closed \rightarrow battery loses energy; Switch open \rightarrow battery energy constant.
- 4. Switch closed \rightarrow battery energy constant; Switch open \rightarrow battery loses energy.
- 5. Switch closed \rightarrow battery energy constant; Switch open \rightarrow battery gains energy.
- Switch closed → battery energy constant;
 Switch open → battery energy constant.

21 October 2024 Phys 100 Fall 2024

Question 3

A $9.0\,\mathrm{V}$ battery is connected to a bulb. In a certain period of time, total charge $1\,\mathrm{C}$ of charge flows around the circuit. In a later period of time, total charge $3\,\mathrm{C}$ flows around the circuit.

Consider the amount of energy that the bulb supplies to the two collections of charge. Which of the following is true?

- 1. Supplies $9.0 \,\mathrm{J}$ to $1 \,\mathrm{C}$ and also to $3 \,\mathrm{C}$.
- 2. Supplies $9.0\,\mathrm{J}$ to $1\,\mathrm{C}$ and $27\,\mathrm{J}$ to $3\,\mathrm{C}$.
- 3. Supplies $9.0\,\mathrm{J}$ to $1\,\mathrm{C}$ and $3\,\mathrm{J}$ to $3\,\mathrm{C}$.